ACADEMIC REGULATIONS
COURSE STRUCTURE
AND
DETAILED SYLLABUS

ELECTRONICS &
COMMUNICATION
ENGINEERING

For

B.Tech., FOUR YEAR DEGREE COURSE
(Applicable for the batches admitted from 2013-14)

Jawaharlal Nehru Technological
University Kakinada
Kakinada – 533003, Andhra Pradesh, India.
Electronics & Communication Engineering

Academic Regulations (R13) for B. Tech. (Regular)

Applicable for the students of B. Tech. (Regular) from the Academic Year 2013-14 onwards

1. **Award of B. Tech. Degree**

 A student will be declared eligible for the award of B. Tech. Degree if he fulfils the following academic regulations:

 1. A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years.
 2. The candidate shall register for 180 credits and secure all the 180 credits.

2. **Courses of study**

 The following courses of study are offered at present as specializations for the B. Tech. Courses:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Electronics and Communication Engineering</td>
</tr>
<tr>
<td>02</td>
<td>Electrical and Electronics Engineering</td>
</tr>
<tr>
<td>03</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>04</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>05</td>
<td>Computer Science and Engineering</td>
</tr>
<tr>
<td>06</td>
<td>Petro Chemical Engineering</td>
</tr>
<tr>
<td>07</td>
<td>Information Technology</td>
</tr>
<tr>
<td>08</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>09</td>
<td>Electronics and Instrumentation Engineering</td>
</tr>
<tr>
<td>10</td>
<td>Bio-Medical Engineering</td>
</tr>
<tr>
<td>11</td>
<td>Aeronautical Engineering</td>
</tr>
<tr>
<td>12</td>
<td>Automobile Engineering</td>
</tr>
<tr>
<td>13</td>
<td>Bio Technology</td>
</tr>
<tr>
<td>14</td>
<td>Electronics and Computer Engineering</td>
</tr>
<tr>
<td>15</td>
<td>Mining Engineering</td>
</tr>
<tr>
<td>16</td>
<td>Petroleum Engineering</td>
</tr>
<tr>
<td>17</td>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>18</td>
<td>Agricultural Engineering</td>
</tr>
</tbody>
</table>
3. **Distribution and Weightage of Marks**

(i) The performance of a student in each semester shall be evaluated subject – wise with a maximum of 100 marks for theory subject and 75 marks for practical subject. The project work shall be evaluated for 200 marks.

(ii) For theory subjects the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End - Examinations.

(iii) For theory subjects, during the semester there shall be 2 tests. The weightage of Internal marks for 30 consists of Descriptive – 15, Assignment - 05 (Theory, Design, Analysis, Simulation, Algorithms, Drawing, etc. as the case may be) Objective -10 (Conducted at College level with 20 Multiple choice question with a weightage of ½ Mark each). The objective examination is for 20 minutes duration. The subjective examination is for 90 minutes duration conducted for 15 marks. Each subjective type test question paper shall contain 3 questions and all questions need to be answered. The Objective examination conducted for 10 marks and subjective examination conducted for 15 marks are to be added to the assignment marks of 5 for finalizing internal marks for 30. The best of the two tests will be taken for internal marks. As the syllabus is framed for 6 units, the 1st mid examination (both Objective and Subjective) is conducted in 1-3 units and second test in 4-6 units of each subject in a semester.

(iv) The end semester examination is conducted covering the topics of all Units for 70 marks. Part – A contains a mandatory question (Brainstorming / Thought provoking / case study) for 22 marks. Part – B has 6 questions (One from each Unit). The student has to answer 3 out of 6 questions in Part – B and carries a weightage of 16 marks each.

(v) For practical subjects there shall be continuous evaluation during the semester for 25 internal marks and 50 end examination marks. The internal 25 marks shall be awarded as follows: day to day work - 10 marks, Record-5 marks and the remaining 10 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner.

(vi) For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (20 marks for day – to – day work, and 10 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester and the better of the two shall be considered for the award of marks for internal tests.
(vii) For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his understanding over the topic, and submit to the department, which shall be evaluated by the Departmental committee consisting of Head of the department, seminar supervisor and a senior faculty member. The seminar report shall be evaluated for 50 marks. There shall be no external examination for seminar.

(viii) Out of a total of 200 marks for the project work, 60 marks shall be for Internal Evaluation and 140 marks for the End Semester Examination. The End Semester Examination (Viva – Voce) shall be conducted by the committee. The committee consists of an external examiner, Head of the Department and Supervisor of the Project. The evaluation of project work shall be conducted at the end of the IV year. The Internal Evaluation shall be on the basis of two seminars given by each student on the topic of his project and evaluated by an internal committee.

(ix) Laboratory marks and the internal marks awarded by the College are not final. The marks are subject to scrutiny and scaling by the University wherever felt desirable. The internal and laboratory marks awarded by the College will be referred to a Committee. The Committee shall arrive at a scaling factor and the marks will be scaled as per the scaling factor. The recommendations of the Committee are final and binding. The laboratory records and internal test papers shall be preserved in the respective departments as per the University norms and shall be produced to the Committees of the University as and when they ask for.

4. **Attendance Requirements**

1. A student is eligible to write the University examinations if he acquires a minimum of 75% of attendance in aggregate of all the subjects.

2. Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.

3. Shortage of Attendance below 65% in aggregate shall not be condoned.

4. A student who is short of attendance in semester may seek re-admission into that semester when offered within 4 weeks from the date of the commencement of class work.

5. Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.
6. A stipulated fee shall be payable towards condonation of shortage of attendance.

7. A student will be promoted to the next semester if he satisfies the (i) attendance requirement of the present semester and (ii) credits.

8. If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.

5. **Minimum Academic Requirements**

The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no. 4.

5.1 A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/project and secures not less than 35% of marks in the end semester exam, and minimum 40% of marks in the sum total of the internal marks and end semester examination marks.

5.2 A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement.

5.3 A student will be **promoted from II year to III year** if he fulfills the academic requirement of 40% of the credits up to II year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.

5.4 A student shall be **promoted from III year to IV year** if he fulfills the academic requirements of 40% of the credits up to III year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

5.5 A student shall register and put up minimum attendance in all 180 credits and earn all 180 credits. **Marks obtained in all the 180 credits shall be considered for the calculation of percentage of marks.**

6. **Course pattern**

1. The entire course of study is for four academic years, all the years are on semester pattern.

2. A student eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.
3. When a student is detained for lack of credits / shortage of attendance, he may be re-admitted into the same semester / year in which he has been detained. However, the academic regulations under which he was first admitted shall continues to be applicable to him.

7. **Award of Class**

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>% of marks to be secured</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70 but not less than 60%</td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
</tr>
</tbody>
</table>

From the aggregate marks secured from 180 Credits.

The marks obtained in internal evaluation and end semester examination shall be shown separately in the memorandum of marks.

8. **Minimum Instruction Days**

The minimum instruction days for each semester shall be 90 working days.

9. There shall be no branch transfers after the completion of the admission process.

10. There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Kakinada.

11. **WITHHOLDING OF RESULTS**

If the student has not paid the dues, if any, to the university or if any case of indiscipline is pending against him, the result of the student will be withheld. His degree will be withheld in such cases.
12. **TRANSITORY REGULATIONS**

1. Discontinued or detained candidates are eligible for readmission as and when next offered.
2. In case of transferred students from other Universities, the credits shall be transferred to JNTUK as per the academic regulations and course structure of the JNTUK.

13. **General**

1. Wherever the words “he”, “him”, “his”, occur in the regulations, they include “she”, “her”, “hers”.
2. The academic regulation should be read as a whole for the purpose of any interpretation.
3. In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
4. The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.
5. The students seeking transfer to colleges affiliated to JNTUK from various other Universities/Institutions have to pass the failed subjects which are equivalent to the subjects of JNTUK, and also pass the subjects of JNTUK on their own without the right to sessional marks which the candidates have not studied at the earlier Institution.

Academic Regulations (R13) for B. Tech.
(Lateral entry Scheme)

Applicable for the students admitted into II year B. Tech. from the Academic Year 2014-15 onwards

1. **Award of B. Tech. Degree**
 A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

 1.1 A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years.

 1.2 The candidate shall register for 132 credits and secure all the 132 credits.

2. The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech.

3. **Promotion Rule**
 A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

 A student shall be promoted from III year to IV year if he fulfils the academic requirements of 40% of the credits up to III year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

4. **Award of Class**
 After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

<table>
<thead>
<tr>
<th>Class Awarded</th>
<th>% of marks to be secured</th>
<th>From the aggregate marks secured from 132 Credits from II year to IV year.</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>70% and above</td>
<td></td>
</tr>
<tr>
<td>First Class</td>
<td>Below 70% but not less than 60%</td>
<td></td>
</tr>
<tr>
<td>Second Class</td>
<td>Below 60% but not less than 50%</td>
<td></td>
</tr>
<tr>
<td>Pass Class</td>
<td>Below 50% but not less than 40%</td>
<td></td>
</tr>
</tbody>
</table>

The marks obtained in the internal evaluation and the end semester examination shall be shown separately in the marks memorandum.

5. All the other regulations as applicable to B. Tech. 4-year degree course (Regular) will hold good for B. Tech. (Lateral Entry Scheme).
MALPRACTICES RULES

Disciplinary Action for / Improper Conduct in Examinations

<table>
<thead>
<tr>
<th>Nature of Malpractices / Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td></td>
</tr>
<tr>
<td>1. (a) Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>1. (b) Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2. Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.</td>
</tr>
<tr>
<td>3. Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Electronics & Communication Engineering</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td></td>
<td>Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
</tr>
<tr>
<td></td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
</tr>
<tr>
<td></td>
<td>Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
<td>semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.</td>
</tr>
<tr>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.</td>
</tr>
<tr>
<td>9.</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10.</td>
<td>Comes in a drunken condition to the examination hall.</td>
</tr>
<tr>
<td>11.</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
</tr>
<tr>
<td>12.</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.</td>
</tr>
</tbody>
</table>

Malpractices identified by squad or special invigilators

1. Punishments to the candidates as per the above guidelines.
2. Punishment for institutions : (if the squad reports that the college is also involved in encouraging malpractices)
 (i) A show cause notice shall be issued to the college.
 (ii) Impose a suitable fine on the college.
 (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year.

* * * * *
Ragging
Prohibition of ragging in educational institutions Act 26 of 1997

Salient Features
- Ragging within or outside any educational institution is prohibited.
- Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student

<table>
<thead>
<tr>
<th>Imprisonment upto</th>
<th>Fine Upto</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Months</td>
<td>Rs. 1,000/-</td>
</tr>
<tr>
<td>1 Year</td>
<td>Rs. 2,000/-</td>
</tr>
<tr>
<td>2 Years</td>
<td>Rs. 5,000/-</td>
</tr>
<tr>
<td>5 Years</td>
<td>Rs. 10,000/-</td>
</tr>
<tr>
<td>10 Months</td>
<td>Rs. 50,000/-</td>
</tr>
</tbody>
</table>

In Case of Emergency CALL TOLL FREE No. : 1800 - 425 - 1288

LET US MAKE JNTUK A RAGGING FREE UNIVERSITY
Ragging

ABSOLUTELY NOT TO RAGGING

1. Ragging is prohibited as per Act 26 of A.P. Legislative Assembly, 1997.
2. Ragging entails heavy fines and/or imprisonment.
3. Ragging invokes suspension and dismissal from the College.
4. Outsiders are prohibited from entering the College and Hostel without permission.
5. Girl students must be in their hostel rooms by 7.00 p.m.
6. All the students must carry their Identity Cards and show them when demanded.
7. The Principal and the Wardens may visit the Hostels and inspect the rooms any time.

Jawaharlal Nehru Technological University Kakinada
For Constituent Colleges and Affiliated Colleges of JNTUK

In Case of Emergency CALL TOLL FREE No. : 1800 - 425 - 1288
LET US MAKE JNTUK A RAGGING FREE UNIVERSITY
COURSE STRUCTURE

I Year – I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>English – I</td>
<td>3</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Mathematics - I</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Mathematics – II (Mathematical Methods)</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Engineering Physics</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Professional Ethics and Human Values</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Engineering Drawing</td>
<td>1+3</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>English - Communication Skills Lab -1</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Engineering Physics Laboratory</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Engineering Physics – Virtual Labs - Assignments</td>
<td>--</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>Engineering Workshop & IT Workshop</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

I Year – II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>English – II</td>
<td>3</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Mathematics – III</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Chemistry</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Engineering Mechanics</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Computer Programming</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Network Analysis</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Engineering Chemistry Laboratory</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>English - Communication Skills Lab -2</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Computer Programming Lab</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>
II Year – I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Managerial Economics and Financial Analysis</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Electronic Devices and Circuits</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Data Structures</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Environmental Studies</td>
<td>3</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Signals & Systems</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Electrical Technology</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Electronic Devices and Circuits Lab</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Networks & Electrical Technology Lab</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

II Year – II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electronic Circuit Analysis</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Management Science</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Random Variables & Stochastic Processes</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Switching Theory & Logic Design</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>EM Waves and Transmission Lines</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Analog Communications</td>
<td>3+1</td>
<td>--</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Electronic Circuit Analysis Lab</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Analog Communications Lab</td>
<td>--</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>
III Year – I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pulse & Digital Circuits</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Linear IC Applications</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Control Systems</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Digital System Design & Digital IC Applications</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Antennas and Wave Propagation</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Pulse & Digital Circuits Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>LIC Applications Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Digital System Design & DICA Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>IPR& Patents</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total Credits 23

III Year – II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microprocessors and Microcontrollers</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Digital Signal Processing</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Digital Communications</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Microwave Engineering</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Open Elective</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Microprocessors and Microcontrollers Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Digital Communications Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Digital Signal Processing Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Séminar</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Credits 22
IV Year – I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VLSI Design</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Computer Networks</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Digital Image Processing</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Computer Architecture & Organization</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Elective – I
1. Electronic Switching Systems
2. Analog IC Design
3. Object Oriented Programming & O S
4. Radar Systems
5. Advanced Computer Architecture

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Elective – II</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
1. Optical Communication
2. Digital IC Design
3. Speech Processing
4. Artificial Neural Network & Fuzzy Logic
5. Network Security & Cryptography

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>VLSI Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Microwave Engineering Lab</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>

IV Year – II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cellular Mobile Communication</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Electronic Measurements and Instrumentation</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Elective III
1. Satellite Communication
2. Mixed signal Design
3. Embedded systems
4. RF Circuit Design
5. Cloud Computing

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Elective IV</td>
<td>3+1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
1. Wireless Sensors and Networks
2. System on Chip
3. Low Power IC Design
4. Bio-Medical Instrumentation
5. EMI/EMC

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Subject</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Project & Seminar</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Total Credits</td>
<td></td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>
Total course credits = 48 + 44 + 45 + 43 = 180

Open Electives:

1. Bio Medical Engineering
2. Fuzzy & Neural Networks
3. Image Processing (not for ECE Students)
4. Principles of Signals, Systems and Communications (Not for ECE Students)
5. Electronic Instrumentation (Not for ECE Students)
SYLLABUS

I Year – I SEMESTER

ENGLISH – I

(Common to All Branches)

T P C
3+1 0 3

DETAILED TEXT-I English Essentials: Recommended Topics:

1. **IN LONDON: M.K. GANDHI**

 OBJECTIVE: To apprise the learner how Gandhi spent a period of three years in London as a student.

 OUTCOME: The learner will understand how Gandhi grew in introspection and maturity.

2. **THE KNOWLEDGE SOCIETY- APJ KALAM**

 OBJECTIVE: To make the learners rediscover India as a land of Knowledge.

 OUTCOME: The learners will achieve a higher quality of life, strength and sovereignty of a developed nation.

3. **THE SCIENTIFIC POINT OF VIEW- J.B.S. HALDANE**

 OBJECTIVE: This essay discusses how scientific point of view seeks to arrive at the truth without being biased by emotion.

 OUTCOME: This develops in the student the scientific attitude to solve many problems which we find difficult to tackle.

4. **PRINCIPLES OF GOOD WRITING:**

 OBJECTIVE: To inform the learners how to write clearly and logically.

 OUTCOME: The learner will be able to think clearly and logically and write clearly and logically.

5. **MAN’S PERIL**

 OBJECTIVE: To inform the learner that all men are in peril.

 OUTCOME: The learner will understand that all men can come together and avert the peril.

6. **THE DYING SUN—SIR JAMES JEANS**

 OBJECTIVE: This excerpt from the book “The Mysterious Universe” presents the mysterious nature of the Universe and the stars which present numerous problems to the scientific mind. Sir James Jeans uses a poetic approach to discuss the scientific phenomena.

 OUTCOME: This provides the students to think about the scientific phenomena from a different angle and also exposes the readers to poetic expressions.
7. LUCK—MARK TWAIN

OBJECTIVE: This is a short story about a man’s public image and his true nature. The theme of the story is that luck can be a factor of life, so that even if one is incompetent but lucky, one can still succeed.

OUTCOME: The story is humorous in that it contains a lot of irony. Thus this develops in the learner understand humourous texts and use of words for irony.

Text Book: ‘English Essentials’ by Ravindra Publications

NON-DETALLIED TEXT:

(From Modern Trailblazers of Orient Blackswan)
(Exclusive single Text book for two semesters)
(Semester I (1 to 4 lessons)/ Semester II (5 to 8 lessons)

1. G.D.Naidu
 OBJECTIVE: To inspire the learners by G.D.Naidu’s example of inventions and contributions.
 OUTCOME: The learner will be in a position to emulate G.D.Naidu and take to practical applications.

2. G.R.Gopinath
 OBJECTIVE: To inspire the learners by his example of inventions.
 OUTCOME: Like G.R.Gopinath, the learners will be able to achieve much at a low cost and help the common man.

3. Sudhamurthy
 OBJECTIVE: To inspire the learners by the unique interests and contributions of Sudha Murthy.
 OUTCOME: The learner will take interest in multiple fields of knowledge and make life worthwhile through social service.

4. Vijay Bhatkar
 OBJECTIVE: To inspire the learner by his work and studies in different fields of engineering and science.
 OUTCOME: The learner will emulate him and produce memorable things.

Text Book: ‘Trail Blazers’ by Orient Black Swan Pvt. Ltd. Publishers
MATHEMATICS – I (DIFFERENTIAL EQUATIONS)
(Common to All Branches)

UNIT I: Differential equations of first order and first degree:
Linear-Bernoulli-Exact-Reducible to exact.
Subject Category
ABET Learning Objectives a d e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT II: Linear differential equations of higher order:
Non-homogeneous equations of higher order with constant coefficients with RHS term of the type e^{ax}, Sin ax, cos ax, polynomials in x, $e^{ax} V(x)$, $xV(x)$.
Applications: LCR circuit, Simple Harmonic motion
Subject Category
ABET Learning Objectives a d e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT III Laplace transforms:
Laplace transforms of standard functions-ShiftingTheorems, Transforms of derivatives and integrals – Unit step function –Dirac’s delta function- Inverse Laplace transforms– Convolution theorem (with out proof).
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT IV Partial differentiation:
Introduction- Total derivative-Chain rule-Generalized Mean Value theorem for single variable (without proof)-Taylors and Mc Laurent’s series for two variables– Functional dependence- Jacobian.
Applications: Maxima and Minima of functions of two variables with constraints and without constraints.
Subject Category
ABET Learning Objectives a c e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT V First order Partial differential equations:
Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions –solutions of first order linear (Lagrange) equation and nonlinear (standard type) equations
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT VI Higher order Partial differential equations:
Solutions of Linear Partial differential equations with constant coefficients-
Method of separation of Variables
Applications : One- dimensional Wave, Heat equations - two-dimensional Laplace Equation.
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation B E

Books:
<table>
<thead>
<tr>
<th>Subject Category</th>
<th>ABET Learning Objectives</th>
<th>ABET Internal Assessments</th>
<th>JNTUK External Evaluation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>a) Apply knowledge of math, science, & engineering</td>
<td>1. Objective tests</td>
<td>A. Questions should have:</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>b) Design & conduct experiments, analyze & interpret data</td>
<td>2. Essay questions tests</td>
<td>B. Definitions, Principle of operation or philosophy of concept.</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>c) Design a system/proces to meet desired needs within economic, social, political, ethical, health/safety, manufacturability, & sustainability constraints</td>
<td>3. Peer tutoring based</td>
<td>C. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference.</td>
<td></td>
</tr>
<tr>
<td>Algorithms</td>
<td>d) Function on multidisciplinary teams</td>
<td>4. Simulation based</td>
<td>D. Design oriented problems</td>
<td></td>
</tr>
<tr>
<td>Drawing</td>
<td>e) Identify, formulate, & solve engineering problems</td>
<td>5. Design oriented</td>
<td>E. Trouble shooting type of questions</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>f) Understand professional & ethical responsibilities</td>
<td>6. Problem based</td>
<td>F. Applications related questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g) Communicate effectively</td>
<td>7. Experiential (project based) based</td>
<td>G. Brain storming questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h) Understand impact of engineering</td>
<td>8. Lab work or field work based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Presentation based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Case Studies based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Role-play based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Portfolio based</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electronics & Communication Engineering

<table>
<thead>
<tr>
<th>solutions in global, economic, environment, & societal context</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Recognize need for & be able to engage in lifelong learning</td>
</tr>
<tr>
<td>j) Know contemporary issues</td>
</tr>
<tr>
<td>k) Use techniques, skills, modern tools for engineering practices</td>
</tr>
</tbody>
</table>
I Year – I SEMESTER

MATHEMATICS – II
(MATHEMATICAL METHODS)
(Common to All Branches)

UNIT I Solution of Algebraic and Transcendental Equations:
Subject Category
ABET Learning Objectives a e k
ABET internal assessments 1 2 4 6
JNTUK External Evaluation A B E

UNIT II Interpolation:
Introduction- Errors in Polynomial Interpolation – Finite differences-Forward Differences- Backward differences –Central differences – Symbolic relations and separation of symbols-Differences of a polynomial-Newton’s formulae for interpolation – Interpolation with unevenly spaced points - Lagrange’s Interpolation formula
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 4 6
JNTUK External Evaluation A B E

UNIT III Numerical solution of Ordinary Differential equations:
Solution by Taylor’s series-Picard’s Method of successive Approximations- Euler’s Method-Runge-Kutta Methods
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 4 6
JNTUK External Evaluation A B E

UNIT IV Fourier Series:
Introduction- Determination of Fourier coefficients – even and odd functions –change of interval– Half-range sine and cosine series application: Amplitude, spectrum of a periodic function
Subject Category
ABET Learning Objectives a e d
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT V Fourier Transforms:
Fourier integral theorem (only statement) – Fourier sine and cosine integrals - sine and cosine transforms – properties – inverse transforms – Finite Fourier transforms
Subject Category
ABET Learning Objectives a d e k
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT VI Z-transform:
Introduction– properties – Damping rule – Shifting rule – Initial and final value theorems -Inverse z transform- -Convolution theorem – Solution of difference equation by Z -transforms.
Subject Category
ABET Learning Objectives a b e k
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

BOOKS:
<table>
<thead>
<tr>
<th>Subject Category</th>
<th>ABET Learning Objectives</th>
<th>ABET Internal Assessments</th>
<th>JNTUK External Evaluation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>a) Apply knowledge of math, science, & engineering</td>
<td>1. Objective tests</td>
<td>A. Questions should have:</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>b) Design & conduct experiments, analyze & interpret data</td>
<td>2. Essay questions tests</td>
<td>B. Definitions, Principle of operation or philosophy of concept.</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>c) Design a system/process to meet desired needs within economic, social, political, ethical, health/safety, manufacturability, & sustainability constraints</td>
<td>3. Peer tutoring based</td>
<td>C. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference.</td>
<td></td>
</tr>
<tr>
<td>Algorithms</td>
<td>d) Function on multidisciplinary teams</td>
<td>4. Simulation based</td>
<td>D. Design oriented problems</td>
<td></td>
</tr>
<tr>
<td>Drawing</td>
<td>e) Identify, formulate, & solve engineering problems</td>
<td>5. Design oriented</td>
<td>E. Trouble shooting type of questions</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>f) Understand professional & ethical responsibilities</td>
<td>6. Problem based</td>
<td>F. Application related questions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Remarks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. Questions should have:</td>
</tr>
<tr>
<td></td>
<td>B. Definitions, Principle of operation or philosophy of concept.</td>
</tr>
<tr>
<td></td>
<td>C. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference.</td>
</tr>
<tr>
<td></td>
<td>D. Design oriented problems</td>
</tr>
<tr>
<td></td>
<td>E. Trouble shooting type of questions</td>
</tr>
<tr>
<td></td>
<td>F. Application related questions</td>
</tr>
<tr>
<td></td>
<td>G. Brain storming questions</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>g) Communicate effectively</td>
<td></td>
</tr>
<tr>
<td>h) Understand impact of engineering solutions in global, economic, environmental, & societal context</td>
<td></td>
</tr>
<tr>
<td>i) Recognize need for & be able to engage in lifelong learning</td>
<td></td>
</tr>
<tr>
<td>j) Know contemporary issues</td>
<td></td>
</tr>
<tr>
<td>k) Use techniques, skills, modern tools for engineering practices</td>
<td></td>
</tr>
</tbody>
</table>
I Year – I SEMESTER

ENGINEERING PHYSICS

UNIT-I

PHYSICAL OPTICS FOR INSTRUMENTS
“Objective Designing an instrument and enhancing the resolution for its operation would be effective as achieved through study of applicational aspects of physical Optics”

UNIT-II

COHERENT OPTICS – COMMUNICATIONS AND STRUCTURE OF MATERIALS
Objectives while lasers are trusted Non-linear coherent sources established for the fitness of instrumentation, establishing a structure property relationship for materials requires allotment of an equivalent footing in convening the physics knowledge base.

X-RAY DIFFRACTION TECHNIQUES : Directions and planes in crystals – Miller indices – Separation between successive [h k l] planes – Bragg’s law.
UNIT-III
MAGNETIC, ELECTRIC FIELD RESPONSE OF MATERIALS & SUPERCONDUCTIVITY

Objective: Many of the Electrical or Electronic gadgets are designed basing on the response of naturally abundant and artificially made materials, while their response to E- or H- fields controls their performance.

MAGNETIC PROPERTIES: Magnetic permeability – Magnetization – Organ or magnetic moment – Classification of Magnetic materials – Dir, para, Ferro, anti ferro and ferri-magnetism – Hysteresis curve

SUPERCONDUCTIVITY: General properties – Meissner effect – Type I and Type II superconductors – BCS Theory Flux quantization London’s equations – Penetration depth – DC and AC Josephson effects – SQUIDS.

UNIT – IV
ACOUSTICS AND EM – FIELDS:
Objective: The utility and nuances of ever pervading SHM and its consequences would be the first hand-on to as it clearly conveyed through the detailed studies of Acoustics of Buildings, while vectorial concepts of EM fields paves the student to gear – up for a deeper understanding.

ACOUSTICS: Sound absorption, absorption coefficient and its measurements, Reverberations time – Sabine’s formula, Eyring’s formula.

ELECTRO-MAGNETIC FIELDS: Gauss and stokes theorems (qualitative) – Fundamental laws of electromagnetism – Maxwell’s Electromagnetic Equations (Calculus approach).

UNIT – V
QUANTUM MECHANICS FOR ELECTRONIC TRANSPORT
Objective: The discrepancy between classical estimates and laboratory observations of physical properties exhibited by materials would be lifted out through the understanding quantum picture of sub-atomic world dominated by electron and its presence.

QUANTUM MECHANICS: Introduction to matter waves – Schrodinger Time Independent and Time Dependent wave equations – Particle in a box.

FREE ELECTRON THEORY: Classical free electron theory – electrical conductivity – Mean free path – Relaxation time and drift velocity – Quantum free electron theory – Fermi – Dirac (analytical) and its dependence
on temperature – Fermi energy – density of states – derivations for current density.

UNIT – VI

SEMICONDUCTOR PHYSICS:

Objective: In the wake of ever increasing demand for the space and power the watch word “small is beautiful”, understanding the physics of electronic transport as underlying mechanism for appliances would provide a knowledge base.

TEXT BOOKS

1. Solid state Physics by A.J. Dekker (Mc Millan India Ltd.).
3. Engineering Physics b;y M.R. Srinivasan (New Age international publishers).

REFERENCE BOOKS

1. ‘Introduction to solid state physics’ by Charles Kittle (Willey India Pvt. Ltd).
2. ‘Applied Physics’ by T. Bhimasenkaram (BSP BH Publications)
3. ‘Applied Physics’ by M.Arumugam (Anuradha Agencies)
4. ‘Engineering Physics’ by Palanisamy (Scitech Publishers)
5. ‘Engineering Physics’ by D.K.Bhattacharya (Oxford University press).
6. ‘Engineering Physics’ by Mani Naidu S (Pearson Publications)
7. ‘Engineering Physics’ by Sanjay D Jain and Girish G Sahasrabudhe (University Press).
I Year – I SEMESTER

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Professional Ethics and Human Values

UNIT I: Human Values:

UNIT II: Engineering Ethics:

UNIT III: Engineering as Social Experimentation:

UNIT IV: Engineers’ Responsibility for Safety and Risk:

UNIT V: Engineers’ Responsibilities and Rights:
UNIT VI : Global Issues:

Text Books:

4. “Professional Ethics and Human Values” by Prof. D.R. Kiran.
5. “Indian Culture, Values and Professional Ethics” by PSR Murthy-BS Publication.
Objective: Engineering drawing being the principle method of communication for engineers, the objective to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

UNIT I
Objective: The objective is to introduce the use and the application of drawing instruments and to make the students construct the polygons, curves and various types of scales. The student will be able to understand the need to enlarge or reduce the size of objects in representing them. Polygons, Construction of regular polygons using given length of a side; Ellipse, arcs of circles and Oblong methods; Scales – Vernier and Diagonal scales.

UNIT II
Objective: The objective is to introduce orthographic projections and to project the points and lines parallel to one plane and inclined to other. Introduction to orthographic projections; projections of points; projections of straight lines parallel to both the planes; projections of straight lines – parallel to one plane and inclined to the other plane.

UNIT III
Objective: The objective is to make the students draw the projections of the lines inclined to both the planes. Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclinations and traces.

UNIT IV
Objective: The objective is to make the students draw the projections of the plane inclined to both the planes. Projections of planes: regular planes perpendicular/parallel to one plane and inclined to the other reference plane; inclined to both the reference planes.
UNIT V
Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes. Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to one of the planes.

UNIT VI
Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa. Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

TEXT BOOKS:
1. Engineering Drawing by N.D. Butt, Chariot Publications

REFERENCE BOOKS:
I Year – I SEMESTER

ENGLISH – COMMUNICATION SKILLS LAB – I

Suggested Lab Manuals:

OBJECTIVE: To impart to the learner the skills of grammar as well as communication through listening, speaking, reading, and writing including soft, that is life skills.

BASIC COMMUNICATION SKILLS

UNIT 1
A. Greeting and Introductions
B. Pure Vowels

UNIT 2
A. Asking for information and Requests
B. Diphthongs

UNIT 3
A. Invitations
B. Consonants

UNIT 4
A. Commands and Instructions
B. Accent and Rhythm

UNIT 5
A. Suggestions and Opinions
B. Intonation

Text Book:
‘Strengthen your Communication Skills’ Part-A by Maruthi Publications

Reference Books:
1. INFOTECH English (Maruthi Publications)
I Year – I SEMESTER

ENGINEERING PHYSICS LAB

List of Experiments

1. Determination of wavelength of a source-Diffraction Grating- Normal incidence
3. Determination of thickness of a thin object using parallel interference fringes.
4. Determination of Rigidity modulus of a material- Torsional Pendulum.
7. Verification of laws of stretched string – Sonometer.
9. L C R Series Resonance Circuit
10. Study of I/V Characteristics of Semiconductor diode
11. I/V characteristics of Zener diode
12. Thermistor characteristics – Temperature Coefficient
13. Magnetic field along the axis of a current carrying coil – Stewart and Gee’s apparatus.
15. Hall Effect for semiconductor.

REFERENCE:

I Year – I SEMESTER

Engineering Physics
Virtual Labs - Assignments

List of Experiments

1. Hall Effect
2. Crystal Structure
3. Hysteresis
4. Brewster’s angle
5. Magnetic Levitation / SQUID
6. Numerical Aperture of Optical fiber
7. Photoelectric Effect
8. Simple Harmonic Motion
9. Damped Harmonic Motion
10. LASER – Beam Divergence and Spot size

URL : WWW.vlab.co.in
ENGINEERING WORKSHOP & IT WORKSHOP

ENGINEERING WORKSHOP:

Course Objective: To impart hands-on practice on basic engineering trades and skills.

Note: At least two exercises to be done from each trade.

Trade:

- **Carpentry**
 1. T-Lap Joint
 2. Cross Lap Joint
 3. Dovetail Joint
 4. Mortise and Tennon Joint

- **Fitting**
 1. Vee Fit
 2. Square Fit
 3. Half Round Fit
 4. Dovetail Fit

- **Black Smithy**
 1. Round rod to Square
 2. S-Hook
 3. Round Rod to Flat Ring
 4. Round Rod to Square headed bolt

- **House Wiring**
 1. Parallel / Series Connection of three bulbs
 2. Stair Case wiring
 3. Florescent Lamp Fitting
 4. Measurement of Earth Resistance

- **Tin Smithy**
 1. Taper Tray
 2. Square Box without lid
 3. Open Scoop
 4. Funnel

IT WORKSHOP:

Objectives: Enabling the student to understand basic hardware and software tools through practical exposure.

PC Hardware:

Identification of basic peripherals, assembling a PC, installation of system software like MS Windows, device drivers. Troubleshooting Hardware and software _ some tips and tricks.
Internet & World Wide Web:
Different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet, web browsers, email, newsgroups and discussion forums. Awareness of cyber hygiene (protecting the personal computer from getting infected with the viruses), worms and other cyber attacks.

Productivity tools
Crafting professional word documents; excel spread sheets, power point presentations and personal web sites using the Microsoft suite of office tools.
(Note: Student should be thoroughly exposed to minimum of 12 Tasks)

PC Hardware

Task 1: Identification of the peripherals of a computer.
To prepare a report containing the block diagram of the CPU along with the configuration of each peripheral and its functions. Description of various I/O Devices

Task 2 (Optional): A practice on disassembling the components of a PC and assembling them to back to working condition.

Task 3: Examples of Operating systems- DOS, MS Windows, Installation of MS windows on a PC.

Task 4: Introduction to Memory and Storage Devices, I/O Port, Device Drivers, Assemblers, Compilers, Interpreters, Linkers, Loaders.

Task 5:
Hardware Troubleshooting (Demonstration):
Identification of a problem and fixing a defective PC (improper assembly or defective peripherals).

Software Troubleshooting (Demonstration): Identification of a problem and fixing the PC for any software issues.

Internet & Networking Infrastructure

Orientation & Connectivity Boot Camp and web browsing:
Students are trained to configure the network settings to connect to the Internet. They are trained to demonstrate the same through web browsing (including all tool bar options) and email access.

Task 7: Search Engines & Netiquette:
Students are enabled to use search engines for simple search, academic search and any other context based search (Bing, Google etc). Students are
acquainted to the principles of micro-blogging, wiki, collaboration using social networks, participating in online technology forums

Task 8: Cyber Hygiene (Demonstration): Awareness of various threats on the internet. Importance of security patch updates and anti-virus solutions. Ethical Hacking, Firewalls, Multi-factor authentication techniques including Smartcard, Biometrics are also practiced.

Word

Task 9 : MS Word Orientation:
Accessing, overview of toolbars, saving files, Using help and resources, rulers, formatting, Drop Cap, Applying Text effects, Using Character Spacing, OLE in Word, using templates, Borders and Colors, Inserting Header and Footer, Using Date and Time option, security features in word, converting documents while saving.

Task 10: Creating project : Abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check , Track Changes, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes and Paragraphs.

Excel

Task 11: Using spread sheet features of EXCEL including the macros, formulae, pivot tables, graphical representations.

Creating a Scheduler - Features to be covered:- Gridlines, Format Cells, Summation, auto fill, Formatting Text.

LOOKUP/VLOOKUP

Task 12: Performance Analysis - Features to be covered:- Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting.

Power Point

**Task 13: Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes :- PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows, Hyperlinks, Inserting –Images, Clip Art, Tables and Charts in Powerpoint.
Task 14: Focusing on the power and potential of Microsoft power point. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes: - Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), Inserting – Background, textures, Design Templates, Hidden slides, OLE in PPT.

TEXT BOOK:

Faculty to consolidate the workshop manuals using the following references
1. Computer Fundamentals, Anita Goel, Pearson
2. Scott Mueller’s Upgrading and Repairing PCs, 18/e, Scott. Mueller, QUE, Pearson,2008
3. Information Technology Workshop,3e, G Praveen Babu, M V Narayana BS Publications.

REFERENCE BOOK:
1. Essential Computer and IT Fundamentals for Engineering and Science Students, Dr. N.B. Venkateswarlu.
2. PC Hardware trouble shooting made easy, TMH.
I Year – II SEMESTER

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3+1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

ENGLISH –II
(Common to All Branches)

DETAILED TEXT-II: Sure Outcomes: English for Engineers and Technologists

Recommended Topics:

1. TECHNOLOGY WITH A HUMAN FACE
 OBJECTIVE: To make the learner understand how modern life has been shaped by technology.
 OUTCOME: The proposed technology is people’s technology. It serves the human person instead of making him the servant of machines.

2. CLIMATE CHANGE AND HUMAN STRATEGY
 OBJECTIVE: To make the learner understand how the unequal heating of earth’s surface by the Sun, an atmospheric circulation pattern is developed and maintained.
 OUTCOME: The learner’s understand that climate must be preserved.

3. EMERGING TECHNOLOGIES
 OBJECTIVE: To introduce the technologies of the 20th century and 21st centuries to the learners.
 OUTCOME: The learner will adopt the applications of modern technologies such as nanotechnology.

4. WATER- THE ELIXIR OF LIFE
 OBJECTIVE: To inform the learner of the various advantages and characteristics of water.
 OUTCOME: The learners will understand that water is the elixir of life.

5. THE SECRET OF WORK
 OBJECTIVE: In this lesson, Swami Vivekananda highlights the importance of work for any development.
 OUTCOME: The students will learn to work hard with devotion and dedication.

6. WORK BRINGS SOLACE
 OBJECTIVE: In this lesson Abdul Kalam highlights the advantage of work.
 OUTCOME: The students will understand the advantages of work. They will overcome their personal problems and address themselves to national and other problems.

NON-DETAILED TEXT:

(From Modern Trailblazers of Orient Blackswan)
(Common single Text book for two semesters)
(Semester I (1 to 4 lessons) / Semester II (5 to 8 lessons)

5. J.C. Bose
OBJECTIVE: To apprise of J.C.Bose’s original contributions.
OUTCOME: The learner will be inspired by Bose’s achievements so that he may start his own original work.

6. Homi Jehangir Bhabha
OBJECTIVE: To show Bhabha as the originator of nuclear experiments in India.
OUTCOME: The learner will be inspired by Bhabha’s achievements so as to make his own experiments.

7. Vikram Sarabhai
OBJECTIVE: To inform the learner of the pioneering experiments conducted by Sarabhai in nuclear energy and relevance of space programmes.
OUTCOME: The learner will realize that development is impossible without scientific research.

OBJECTIVE: To expose the reader to the pleasure of the humorous story
OUTCOME: The learner will be in a position to appreciate the art of writing a short story and try his hand at it.

I Year – II SEMESTER

MATHEMATICS – III
(LINEAR ALGEBRA & VECTOR CALCULUS)
(Common to All Branches)

UNIT I Linear systems of equations:
Application: Finding the current in an electrical circuit.
Subject Category
ABET Learning Objectives a e k
ABET internal assessments 1 2 6 4
JNTUK External Evaluation A B E

UNIT II Eigen values - Eigen vectors and Quadratic forms:
Eigen values - Eigen vectors– Properties – Cayley-Hamilton Theorem - Inverse and powers of a matrix by using Cayley-Hamilton theorem-
Quadratic forms- Reduction of quadratic form to canonical form – Rank - Positive, negative definite - semi definite - index – signature.
Application: Free vibration of a two-mass system.
Subject Category
ABET Learning Objectives a d e k
ABET internal assessments 1 2 4 6
JNTUK External Evaluation A B E

UNIT III Multiple integrals:
Review concepts of Curve tracing (Cartesian - Polar and Parametric curves).
Applications of Integration to Lengths, Volumes and Surface areas of revolution in Cartesian and Polar Coordinates.
Multiple integrals - double and triple integrals – change of variables – Change of order of Integration
Application: Moments of inertia
Subject Category
ABET Learning Objectives a e d
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E
UNIT IV Special functions:
Beta and Gamma functions- Properties - Relation between Beta and Gamma functions- Evaluation of improper integrals.
Application: Evaluation of integrals
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT V Vector Differentiation:
Gradient- Divergence- Curl - Laplacian and second order operators - Vector identities.
Application: Equation of continuity, potential surfaces
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

UNIT VI Vector Integration:
Application: work done, Force
Subject Category
ABET Learning Objectives a e
ABET internal assessments 1 2 6
JNTUK External Evaluation A B E

BOOKS:
<table>
<thead>
<tr>
<th>Subject Category</th>
<th>ABET Learning Objectives</th>
<th>ABET Internal Assessments</th>
<th>JNTUK External Evaluation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>a) Apply knowledge of math, science, & engineering</td>
<td>1. Objective tests</td>
<td>A. Questions should have:</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td>b) Design & conduct experiments, analyze & interpret data</td>
<td>2. Essay questions tests</td>
<td>B. Definitions, Principle of operation or philosophy of concept.</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>c) Design a system/process to meet desired needs within economic, social, political, ethical, health/safety, manufacturability, & sustainability constraints</td>
<td>3. Peer tutoring based</td>
<td>C. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference.</td>
<td></td>
</tr>
<tr>
<td>Algorithms</td>
<td>d) Function on multidisciplinary teams</td>
<td>4. Simulation based</td>
<td>D. Design oriented problems</td>
<td></td>
</tr>
<tr>
<td>Drawing</td>
<td>e) Identify, formulate, & solve engineering problems</td>
<td>5. Design oriented</td>
<td>E. Trouble shooting type of questions</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>f) Understand professional & ethical responsibilities</td>
<td>6. Problem based</td>
<td>F. Applications related questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>g) Communicate effectively</td>
<td>7. Experiential (project based) based</td>
<td>G. Brain storming questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h) Understand impact of engineering solutions in global</td>
<td>8. Lab work or field work based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. Presentation based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10. Case Studies based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11. Role-play based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12. Portfolio based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>economic, environmental, & societal context</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) Recognize need for & be able to engage in lifelong learning</td>
<td>j) Know contemporary issues</td>
<td>k) Use techniques, skills, modern tools for engineering practices</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I Year – II SEMESTER

ENGINEERING CHEMISTRY

UNIT-I: WATER TECHNOLOGY

Objectives: For prospective engineers knowledge about water used in industries (boilers etc.) and for drinking purposes is useful; hence chemistry of hard water, boiler troubles and modern methods of softening hard water is introduced.

UNIT-II: ELECTROCHEMISTRY

Objectives: Knowledge of galvanic cells, electrode potentials, concentration cells is necessary for engineers to understand corrosion problem and its control; also this knowledge helps in understanding modern bio-sensors, fuel cells and improve them.

UNIT-III: CORROSION

Objectives: the problems associated with corrosion are well known and the engineers must be aware of these problems and also how to counter them

UNIT-IV: HIGH POLYMERS
Types of Polymerization – Stereo regular Polymers – Physical and Mechanical properties of polymers – Plastics – Thermoplastics and thermo setting plastics – Compounding and Fabrication of plastics – Preparation and

Objectives: Plastics are materials used very widely as engineering materials. An understanding of properties particularly physical and mechanical properties of polymers / plastics / elastomers helps in selecting suitable materials for different purposes.

UNIT-V : FUELS

Objectives: A board understanding of the more important fuels employed on a large scale is necessary for all engineer to understand energy – related problems and solve them.

UNIT-VI : CHEMISTRY OF ADVANCED MATERIALS

Objectives: With the knowledge available now, future engineers should know at least some of the advanced materials that are becoming available. Hence some of them are introduced here.

TEXT BOOKSS

REFERENCES
ENGINEERING MECHANICS

Objectives: The students completing this course are expected to understand the concepts of forces and its resolution in different planes, resultant of force system, Forces acting on a body, their free body diagrams using graphical methods. They are required to understand the concepts of centre of gravity and moments of inertia and their application, Analysis of frames and trusses, different types of motion, friction and application of work-energy method.

UNIT – I
Objectives: The students are to be exposed to the concepts of force and friction, direction and its application.

UNIT II
Objectives: The students are to be exposed to application of free body diagrams. Solution to problems using graphical methods and law of triangle of forces.

UNIT – III
Objectives: The students are to be exposed to concepts of centre of gravity.
Centroid: Centroids of simple figures (from basic principles) – Centroids of Composite Figures.
Centre of Gravity: Centre of gravity of simple body (from basis principles), centre of gravity of composite bodies, pappus theorem.

UNIT IV
Objective: The students are to be exposed to concepts of moment of inertia and polar moment of inertia including transfer methods and their applications.
Area moments of Inertia: Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia. Mass Moment of Inertia: Moment
of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass
moment of inertia of composite bodies.

UNIT – V
Objectives: The students are to be exposed to motion in straight line and
in curvilinear paths, its velocity and acceleration computation and
methods of representing plane motion.
Kinematics: Rectilinear and Curvilinear motions – Velocity and
Acceleration – Motion of Rigid Body – Types and their Analysis in Planar
Motion. Kinetics: Analysis as a Particle and Analysis as a Rigid Body in
Translation – Central Force Motion – Equations of Plane Motion – Fixed
Axis Rotation – Rolling Bodies.

UNIT – VI
Objectives: The students are to be exposed to concepts of work, energy
and particle motion
Applications to Particle Motion, Connected System-Fixed Axis Rotation and
Plane Motion. Impulse momentum method.

TEXT BOOKS:
 Hill publications.
 and Jaan Kiusalaas; Cengage Learning publishers.

REFERENCES:
 Pearson Publ.
 Pvt. Ltd.
 Publ.
7. Theory & Problems of engineering mechanics, statics & dynamics –
 publications.
Objective: Formulating algorithmic solutions to problems and implementing algorithms in C.

UNIT I:
Unit objective: Notion of Operation of a CPU, Notion of an algorithm and computational procedure, editing and executing programs in Linux
Introduction: Computer systems, Hardware and Software Concepts.
Problem Solving: Algorithm / Pseudo code, flowchart, program development steps, computer languages: machine, symbolic and highlevel languages, Creating and Running Programs: Writing, Editing (vi/emacs editor), Compiling (gcc), Linking and Executing in under Linux.

BASICS OF C: Structure of a C program, identifiers, basic data types and sizes. Constants, Variables, Arithmetic, relational and logical operators, increment and decrement operators, conditional operator, assignment operator, expressions, type conversions, Conditional Expressions, precedence and order of evaluation, Sample Programs.

UNIT II:
Unit objective: understanding branching, iteration and data representation using arrays
SELECTION – MAKING DECISION: Two way selection: if-else, null else, nested if, examples, Multi-way selection: switch, else-if, examples.
ITERATIVE: loops- while, do-while and for statements, break, continue, initialization and updating, event and counter controlled loops, Looping applications: Summation, powers, smallest and largest.
ARRAYS: Arrays- concepts, declaration, definition, accessing elements, storing elements, Strings and String Manipulations, 1-D arrays, 2-D arrays and character arrays, string manipulations, Multidimensional arrays, array applications: Matrix operations, checking the symmetricity of a Matrix.
STRINGS: concepts, c strings.

UNIT III:
Objective: Modular programming and recursive solution formulation
FUNCTIONS- MODULAR PROGRAMMING: functions, basics, parameter passing, storage classes extern, auto, register, static, scope rules, block structure, user defined functions, standard library functions, recursive functions, Recursive solutions for fibonacci series, towers of Hanoi, header
files, C Preprocessor, example c programs, Passing 1-D arrays, 2-D arrays to functions.

UNIT IV:
Objective: Understanding pointers and dynamic memory allocation
POINTERS: pointers- concepts, initialization of pointer variables, pointers and function arguments, passing by address- dangling memory, address arithmetic, character pointers and functions, pointers to pointers, pointers and multi-dimensional arrays, dynamic memory management functions, command line arguments.

UNIT V:
Objective: Understanding miscellaneous aspects of C
ENUMERATED, STRUCTURE AND UNION TYPES: Derived types- structures- declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit-fields, program applications
BIT-WISE OPERATORS: logical, shift, rotation, masks.

UNIT VI:
Objective: Comprehension of file operations
FILE HANDLING: Input and output- concept of a file, text files and binary files, Formatted I/O, File I/O operations, example programs

Text Books:
1. Problem Solving and Program Design in C, Hanly, Koffman, 7th ed, PERSON
3. Programming in C, A practical approach Ajay Mittal PEARSON
4. The C programming Language by Dennis Richie and Brian Kernighan

Reference Books and web links:
2. Programming with C, Bichkar, Universities Press
3. Programming in C, Reema Thareja, OXFORD
4. C by Example, Noel Kalicharan, Cambridge
I Year – II SEMESTER

T P C
3+1 0 3

NETWORK ANALYSIS

UNIT – I

Network Topology: Definitions of branch, node, tree, planar, non-planar graph, incidence matrix, basic tie set schedule, basic cut set schedule. (Text Books: 2,3, Reference Books: 3)

UNIT – II

UNIT – III
Coupled Circuits: Coupled Circuits: Self inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, Conductively coupled equivalent circuits- problem solving.

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth of parallel resonance, general case-resistance present in both branches, anti resonance at all frequencies. (Text Books:2,3, Reference Books: 3)
UNIT – IV
Network Theorems: Thevinin’s, Norton’s, Milliman’s, Reciprocity, Compensation, Substitution, Superposition, Max Power Transfer, Tellegen’s-problem solving using dependent sources also. (Text Books: 1,2,3, Reference Books: 2)

UNIT – V
Two-port networks: Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h-parameters, Inverse h-parameters, Inverse Transmission line parameters, Relationship between parameter sets, Parallel connection of two port networks, Cascading of two port networks, series connection of two port networks, problem solving including dependent sources also. (Text Books: 1,2, Reference Books: 1,3)

UNIT – VI
Transients: First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, Evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogenous, problem solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method. (Text Books: 1,2,3, Reference Books: 1,3)

TEXT BOOKS:
2. Network Analysis by K.Satya Prasad and S Sivanagaraju, Cengage Learning
3. Electric Circuit Analysis by Hayt and Kimmarle, TMH

REFERENCES:
2. Basic Circuit Analysis by DR Cunningham, Jaico Publishers.
Electronics & Communication Engineering

I Year – II SEMESTER

ENGINEERING CHEMISTRY LABORATORY

List of Experiments

1. Introduction to chemistry laboratory – Molarity, Normality, Primary, Secondary standard solutions, Volumetric titrations, Quantitative analysis, Quantitative analysis etc.,
2. Trial experiment – Estimation of HCl using standard Na₂CO₃ solutions
3. Estimation of KMnO₄ using standard Oxalic acid solution.
4. Estimation of Ferric iron using standard K₂Cr₂O₇ solution.
5. Estimation of Copper using standard K₂Cr₂O₇ solution.
7. Estimation of Copper using standard EDTA solution.
8. Estimation of Copper using Colorimeter
10. Conductometric Titrations between strong acid and strong base
11. Conductometric Titrations between strong acid and Weak base
12. Potentiometric Titrations between strong acid and strong base
13. Potentiometric Titrations between strong acid and Weak base
14. Estimation of Zinc using standard potassium ferrocyanide solution
15. Estimation of Vitamin – C

TEXT BOOKS

I Year – II SEMESTER

ENGLISH – COMMUNICATION SKILLS LAB – II

Suggested Lab Manuals:

OBJECTIVE: To impart to the learner the skills of grammar as well as communication through listening, speaking, reading, and writing including soft, that is life skills.

ADVANCED COMMUNICATION SKILLS

UNIT 6 Body language
UNIT 7 Dialogues
UNIT 8 Interviews and Telephonic Interviews
UNIT 9 Group Discussions
UNIT 10 Presentation Skills
UNIT 11 Debates

Text Book:

‘Strengthen your Communication Skills’ Part-B by Maruthi Publications

Reference Books:

1. INFOTECH English (Maruthi Publications)
I Year – II SEMESTER

T P C
0 3 2

COMPUTER PROGRAMMING LAB

Exercise 1
a) Write a C Program to calculate the area of triangle using the formula
 \[
 \text{area} = \left(s - (s-a)(s-b)(s-c) \right)^{1/2}
 \]
 where \(s = \frac{a+b+c}{2} \)
b) Write a C program to find the largest of three numbers using ternary operator.
c) Write a C Program to swap two numbers without using a temporary variable.

Exercise 2
a) 2’s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary number.
b) Write a C program to find the roots of a quadratic equation.
c) Write a C program, which takes two integer operands and one operator form the user, performs the operation and then prints the result. (Consider the operators +,-,*,, /, % and use Switch Statement)

Exercise 3
a) Write a C program to find the sum of individual digits of a positive integer and find the reverse of the given number.
b) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
c) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

Exercise 4
a) Write a C Program to print the multiplication table of a given number n up to a given value, where n is entered by the user.
b) Write a C Program to enter a decimal number, and calculate and display the binary equivalent of that number.
c) Write a C Program to check whether the given number is Armstrong number or not.
Exercise 5
a) Write a C program to interchange the largest and smallest numbers in the array.
b) Write a C program to implement a linear search.
c) Write a C program to implement binary search.

Exercise 6
a) Write a C program to implement sorting of an array of elements.
b) Write a C program to input two m x n matrices, check the compatibility and perform addition and multiplication of them.

Exercise 7
Write a C program that uses functions to perform the following operations:
i. To insert a sub-string in to given main string from a given position.
ii. To delete n Characters from a given position in a given string.
iii. To replace a character of string either from beginning or ending or at a specified location.

Exercise 8
Write a C program that uses functions to perform the following operations using Structure:
i) Reading a complex number ii) Writing a complex number
iii) Addition of two complex numbers iv) Multiplication of two complex numbers

Exercise 9
Write C Programs for the following string operations without using the built in functions
- to concatenate two strings
- to append a string to another string
- to compare two strings

Exercise 10
Write C Programs for the following string operations without using the built in functions
- to find the length of a string
- to find whether a given string is palindrome or not

Exercise 11
a) Write a C functions to find both the largest and smallest number of an array of integers.
b) Write C programs illustrating call by value and call by reference concepts.
Exercise 12
Write C programs that use both recursive and non-recursive functions for the following
i) To find the factorial of a given integer.
ii) To find the GCD (greatest common divisor) of two given integers.
iii) To find Fibonacci sequence

Exercise 13
a) Write C Program to reverse a string using pointers
b) Write a C Program to compare two arrays using pointers

Exercise 14
a) Write a C program consisting of Pointer based function to exchange value of two integers using passing by address.
b) Write a C program to swap two numbers using pointers.

Exercise 15
Examples which explores the use of structures, union and other user defined variables.

Exercise 16
a) Write a C program which copies one file to another.
b) Write a C program to count the number of characters and number of lines in a file.
c) Write a C Program to merge two files into a third file. The names of the files must be entered using command line arguments.
II Year – I SEMESTER

T **P** **C**
3+1 0 3

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Unit – I:
(*The Learning objective of this Unit is to understand the concept and nature of Managerial Economics and its relationship with other disciplines, Concept of Demand and Demand forecasting*)

Introduction to Managerial Economics and demand Analysis:
(**The Learner is equipped with the knowledge of estimating the Demand for a product and the relationship between Price and Demand).

Unit – II:
(*The Learning objective of this Unit is to understand the concept of Production function, Input Output relationship, different Cost Concepts and Concept of Cost-Volume-Profit Analysis*)

Production and Cost Analyses:
(**One should understand the Cost Concepts for decision making and to estimate the least cost combination of inputs).)

Unit – III:
(*The Learning Objective of this Unit is to understand the Nature of Competition, Characteristics of Pricing in the different market structure and significance of various pricing methods).*

Introduction to Markets, Theories of the Firm & Pricing Policies:
Market Structures: Perfect Competition, Monopoly and Monopolistic and Oligopoly – Features – Price, Output Determination – Managerial Theories of firm: Maris and Williamson’s models – Methods of Pricing: Limit Pricing,
Market Skimming Pricing, Internet Pricing: Flat Rate Pricing, Usage sensitive, Transaction based pricing, Priority Pricing.

(** One has to understand the nature of different markets and Price Output determination under various market conditions).

Unit – IV:

(*The Learning objective of this Unit is to know the different forms of Business organization and their Merits and Demerits both public & private Enterprises and the concepts of Business Cycles)

Types of Business Organization and Business Cycles:

(**One should equipped with the knowledge of different Business Units)

Unit – V:

(*The Learning objective of this Unit is to understand the different Accounting Systems preparation of Financial Statements and uses of different tools for performance evaluation)

Introduction to Accounting & Financing Analysis:

(**The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis).

Unit – VI:

(*The Learning objective of this Unit is to understand the concept of Capital, Capitalization, Capital Budgeting and to know the techniques used to evaluate Capital Budgeting proposals by using different methods).

(**The Learner is able to evaluate various investment project proposals with the help of capital budgeting techniques for decision making).

Note : *Learning Objective

** Learning Assessment

TEXT BOOKS :

REFERENCES:

1. V. Maheswari : Managerial Economics, Sultan Chand.
II Year – I SEMESTER

T P C
3+1 0 3

ELECTRONIC DEVICES AND CIRCUITS

UNIT-I

Semi Conductor Physics: Insulators, Semiconductors and Metals classification using energy band diagrams, mobility and conductivity, electrons and holes in intrinsic semi conductors, extrinsic semi conductors, drift and diffusion, charge densities in semiconductors, Hall effect, continuity equation, law of junction, Fermi Dirac function, Fermi level in intrinsic and extrinsic Semiconductors.

UNIT- II

Junction Diode Characteristics: Open circuited p-n junction, Biased p-n junction, p-n junction diode, current components in PN junction Diode, diode equation, V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance, energy band diagram of PN junction Diode.

Special Semiconductor Devices: Zener Diode, Breakdown mechanisms, Zener diode applications, LED, LCD, Photo diode, Varactor diode, Tunnel Diode, DIAC, TRIAC, SCR, UJT. Construction, operation and characteristics of all the diodes is required to be considered.

UNIT- III

Rectifiers and Filters: Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and output waveforms; Filters; Inductor filter, Capacitor filter, L-section filter, Π-section filter, Multiple L-section and Multiple Π-section filter, comparison of various filter circuits in terms of ripple factors.

UNIT- IV

Transistor Characteristics:

BJT: Junction transistor, transistor current components, transistor equation, transistor configurations, transistor as an amplifier, characteristics of transistor in Common Base, Common Emitter and Common Collector configurations, Ebers-Moll model of a transistor, punch through/ reach through, Photo transistor, typical transistor junction voltage values.
FET: FET types, construction, operation, characteristics, parameters, MOSFET-types, construction, operation, characteristics, comparison between JFET and MOSFET.

UNIT- V

Transistor Biasing and Thermal Stabilization: Need for biasing, operating point, load line analysis, BJT biasing- methods, basic stability, fixed bias, collector to base bias, self bias, Stabilization against variations in V_{BE}, I_c, and β, Stability factors, (S, S', S''), Bias compensation, Thermal runaway, Thermal stability. FET Biasing- methods and stabilization.

UNIT- VI

Small Signal Low Frequency Transistor Amplifier Models:

BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion of h-parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis, Comparison of transistor amplifiers.

FET: Generalized analysis of small signal model, Analysis of CG, CS and CD amplifiers, comparison of FET amplifiers.

TEXT BOOKS:

REFERENCES:

II Year – I SEMESTER

DATA STRUCTURES

Objectives: Comprehensive knowledge of data structures and ability to implement the same in software applications.

UNIT I:
Objective: exposure to algorithmic complexities, recursive algorithms, searching and sorting techniques

Preliminaries of algorithm, Algorithm analysis and complexity

Data structure- Definition, types of data structures

Recursion: Definition, Design Methodology and Implementation of recursive algorithms, Linear and binary recursion, recursive algorithms for factorial function, GCD computation, Fibonacci sequence, Towers of Hanoi, Tail recursion.

List Searches using Linear Search, Binary Search, Fibonacci Search

Sorting Techniques: Basic concepts, Sorting by: insertion (Insertion sort), selection (heap sort), exchange (bubble sort, quick sort), distribution (radix sort) and merging (merge sort) Algorithms.

UNIT II:
Objectives: Applying stack and queue techniques for logical operations

Stacks and Queues: Basic Stack Operations, Representation of a Stack using Arrays, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions.

UNIT III:
Objectives: Exposure to list representation models in various types of applications

Linked Lists: Introduction, single linked list, representation of a linked list in memory, Operations on a single linked list, Reversing a single linked list, applications of single linked list to represent polynomial expressions and sparse matrix manipulation, Advantages and disadvantages of single linked list, Circular linked list, Double linked list.
UNIT IV:
Objectives: Implementation of tree implementation in various forms
Trees: Basic tree concepts, Binary Trees: Properties, Representation of Binary Trees using arrays and linked lists, operations on a Binary tree, Binary Tree Traversals (recursive), Creation of binary tree from in, pre and post order traversals

UNIT-V:
Objectives: Advanced understanding of other variants of trees and their operations.
Advanced concepts of Trees: Tree Travels using stack (non recursive), Threaded Binary Trees. Binary search tree, Basic concepts, BST operations: insertion, deletion, Balanced binary trees – need, basics and applications in computer science (No operations).

UNIT VI:
Objectives: orientation on graphs, representation of graphs, graph traversals, spanning trees.
Graphs: Basic concepts, Representations of Graphs: using Linked list and adjacency matrix, Graph algorithms.
Graph Traversals (BFS & DFS), applications: Dijkstra’s shortest path, Transitive closure, Minimum Spanning Tree using Prim’s Algorithm, warshall’s Algorithm (Algorithmic Concepts Only, No Programs required).

TEXT BOOKS:
1. Data Structure with C, Seymour Lipschutz, TMH
2. Data Structures using C, Reema Thareja, Oxford
3. Data Structures, 2/e, Richard F, Gilberg, Forouzan, Cengage
4. Data structures and algorithm analysis in C, 2nd ed, mark allen weiss

REFERENCE BOOKS:
2. Classic Data Structures, 2/e, Debasis, Samanta, PHI, 2009
II Year – I SEMESTER

ENVIRONMENTAL STUDIES

Course Learning Objectives:
The objectives of the course is to impart
1. Overall understanding of the natural resources
2. Basic understanding of the ecosystem and its diversity
3. Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities
4. An understanding of the environmental impact of developmental activities
5. Awareness on the social issues, environmental legislation and global treaties

Course Outcomes:
The student should have knowledge on
1. The natural resources and their importance for the sustenance of the life and recognise the need to conserve the natural resources
2. The concepts of the ecosystem and its function in the environment. The need for protecting the producers and consumers in various ecosystems and their role in the food web
3. The biodiversity of India and the threats to biodiversity, and conservation practices to protect the biodiversity
4. Various attributes of the pollution and their impacts and measures to reduce or control the pollution along with waste management practices
5. Social issues both rural and urban environment and the possible means to combat the challenges
6. The environmental legislations of India and the first global initiatives towards sustainable development.
7. About environmental assessment and the stages involved in EIA and the environmental audit

Syllabus:
UNIT - I
Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance –Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, acid rains,
ozone layer depletion, population growth and explosion, effects. Role of information Technology in Environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids. - Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT - II

Natural Resources: Natural resources and associated problems.

Forest resources – Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT - III

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity- classification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

UNIT - IV

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear
hazards. Role of an individual in prevention of pollution. - Pollution case studies.

Solid Waste Management: Sources, classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products.

UNIT - V

UNIT - VI

Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism.

The student should submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

Reference:

II Year – I SEMESTER

SIGNALS AND SYSTEMS

UNIT I
SIGNAL ANALYSIS & FOURIER SERIES : Analogy between vectors and signals, Orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, Closed or complete set of orthogonal functions, Orthogonality in complex functions, Exponential and sinusoidal signals, Concepts of Impulse function, Unit step function, Signum function. Representation of Fourier series, Continuous time periodic signals, properties of Fourier series, Dirichlet’s conditions, Trigonometric Fourier series and Exponential Fourier series, Complex Fourier spectrum.

UNIT II

UNIT III
SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS : Linear system, impulse response, Response of a linear system, Linear time invariant (LTI) system, Linear time variant (LTV) system, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Poly-Wiener criterion for physical realization, relationship between bandwidth and rise time.

UNIT IV
CONVOLUTION AND CORRELATION OF SIGNALS : Concept of convolution in time domain and frequency domain, Graphical representation of convolution, Convolution property of Fourier transforms. Cross
correlation and auto correlation of functions, properties of correlation function, Energy density spectrum, Parseval’s theorem, Power density spectrum, Relation between auto correlation function and energy/power spectral density function. Relation between convolution and correlation, Detection of periodic signals in the presence of noise by correlation, Extraction of signal from noise by filtering.

UNIT V
LAPLACE TRANSFORMS : Review of Laplace transforms, Partial fraction expansion, Inverse Laplace transform, Concept of region of convergence (ROC) for Laplace transforms, constraints on ROC for various classes of signals, Properties of L.T’s, Relation between L.T’s, and F.T. of a signal. Laplace transform of certain signals using waveform synthesis.

UNIT VI

TEXT BOOKS :

REFERENCES :
2. Signals and Systems – K R Rajeswari
4. Signals and Systems
II Year – I SEMESTER

ELECTRICAL TECHNOLOGY

This course covers various topics related to principle of operation and performance of various electrical machines.

Learning objectives:

i. To learn the principle of electromechanical energy conversion of single excited and multi excited machines.

ii. To understand the principle of operation, constructional details and operational characteristics of DC generators.

iii. To understand the principle and characteristics of DC motors. To introduce starting and speed control methods of DC motors.

iv. To learn the principle of operation and constructional details of transformers. Develop the equivalent circuit and evaluate the performance of transformers.

v. To learn the principle of operation and constructional details of three phase induction motor. Study the torque – slip characteristics and starting methods of induction motor.

vi. To study the principle of operation of single phase induction motor, shaded pole motor, capacitor motor and AC servo motor.

UNIT I

UNIT II

DC GENERATORS : Principle of operation and construction of DC generators - EMF equation – types of generators – magnetization and load characteristics of DC generators.

UNIT III

DC MOTORS : Principle of operation and construction of DC Motors – types of DC Motors – Characteristics of DC motors – basic starting methods
for DC shunt motor – losses and efficiency – Swinburne’s test – speed control of DC shunt motor – flux and Armature voltage control methods.

UNIT IV

UNIT V

UNIT VI

Learning outcomes:
1. Able to understand the principles of electro mechanical energy conversion.
2. Able to explain the operation of DC generator and analyze the characteristics of DC generator.
3. Able to explain the principle of operation of DC motor and analyze their characteristics. Acquire the skills to analyze the starting and speed control methods of DC motors.
5. Ability to analyze speed – torque characteristics of induction motor and understand starting methods of induction motor.
6. Capability to understand the operation of various special machines.

TEXT BOOKS:
REFERENCE BOOKS:

II Year – I SEMESTER

ELECTRONIC DEVICES AND CIRCUITS LAB

PART A: Electronic Workshop Practice
1. Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Coils, Gang Condensers, Relays, Bread Boards.
2. Identification, Specifications and Testing of active devices, Diodes, BJTs, JFETs, LEDs, LCDs, SCR, UJT.
3. Soldering Practice- Simple circuits using active and passive components.
4. Study and operation of Ammeters, Voltmeters, Transformers, Analog and Digital Multimeter, Function Generator, Regulated Power Supply and CRO.

PART B: List of Experiments
(For Laboratory Examination-Minimum of Ten Experiments)
1. P-N Junction Diode Characteristics
 Part A: Germanium Diode (Forward bias & Reverse bias)
 Part B: Silicon Diode (Forward Bias only)
2. Zener Diode Characteristics
 Part A: V-I Characteristics
 Part B: Zener Diode as Voltage Regulator
3. Rectifiers (without and with c-filter)
 Part A: Half-wave Rectifier
 Part B: Full-wave Rectifier
4. BJT Characteristics (CE Configuration)
 Part A: Input Characteristics
 Part B: Output Characteristics
5. FET Characteristics (CS Configuration)
 Part A: Drain Characteristics
 Part B: Transfer Characteristics
6. SCR Characteristics
7. UJT Characteristics
8. Transistor Biasing
9. CRO Operation and its Measurements
10. BJT-CE Amplifier
11. Emitter Follower-CC Amplifier
12. FET-CS Amplifier

PART C: Equipment required for Laboratory
1. Boxes
2. Ammeters (Analog or Digital)
3. Voltmeters (Analog or Digital)
4. Active & Passive Electronic Components
5. Regulated Power supplies
6. Analog/Digital Storage Oscilloscopes
7. Analog/Digital Function Generators
8. Digital Multimeters
9. Decade Résistance Boxes/Rheostats
10. Decade Capacitance
II Year – I SEMESTER

NETWORKS & ELECTRICAL TECHNOLOGY LAB

PART – A
Any five experiments are to be conducted from each part

2. Time response of first order RC/RL network for periodic non-sinusoidal inputs – time constant and steady state error determination.
3. Two port network parameters – Z-Y Parameters, chain matrix and analytical verification.
4. Verification of Superposition and Reciprocity theorems.
5. Verification of maximum power transfer theorem. Verification on DC, verification on AC with Resistive and Reactive loads.
6. Experimental determination of Thevenin’s and Norton’s equivalent circuits and verification by direct test.

PART – B

2. Swinburne’s Test on DC shunt machine (Predetermination of efficiency of a given DC Shunt machine working as motor and generator).
4. OC & SC tests on Single-phase transformer (Predetermination of efficiency and regulation at given power factors and determination of equivalent circuit).
5. Brake test on 3-phase Induction motor (performance characteristics).
6. Regulation of alternator by synchronous impedance method.
II Year – II SEMESTER

ELECTRONIC CIRCUIT ANALYSIS

UNIT-I
Small Signal High Frequency Transistor Amplifier models:
BJT: Transistor at high frequencies, Hybrid-π common emitter transistor model, Hybrid π conductances, Hybrid π capacitances, validity of hybrid π model, determination of high-frequency parameters in terms of low-frequency parameters, CE short circuit current gain, current gain with resistive load, cut-off frequencies, frequency response and gain bandwidth product.
FET: Analysis of common Source and common drain Amplifier circuits at high frequencies.

UNIT-II
Multistage Amplifiers: Classification of amplifiers, methods of coupling, cascaded transistor amplifier and its analysis, analysis of two stage RC coupled amplifier, high input resistance transistor amplifier circuits and their analysis-Darlington pair amplifier, Cascode amplifier, Boot-strap emitter follower, Analysis of multi stage amplifiers using FET, Differential amplifier using BJT.

UNIT-III
Feedback Amplifiers: Feedback principle and concept, types of feedback, classification of amplifiers, feedback topologies, Characteristics of negative feedback amplifiers, Generalized analysis of feedback amplifiers, Performance comparison of feedback amplifiers, Method of analysis of feedback amplifiers.

UNIT-IV
Oscillators: Oscillator principle, condition for oscillations, types of oscillators, RC-phase shift and Wein bridge oscillators with BJT and FET and their analysis, Generalized analysis of LC Oscillators, Hartley and
Colpitt’s oscillators with BJT and FET and their analysis, Crystal oscillators, Frequency and amplitude stability of oscillators.

UNIT-V
Power Amplifiers: Classification of amplifiers, Class A power Amplifiers and their analysis, Harmonic Distortions, Class B Push-pull amplifiers and their analysis, Complementary symmetry push pull amplifier, Class AB power amplifier, Class-C power amplifier, Thermal stability and Heat sinks, Advanced power amplifiers, Distortion in amplifiers.

UNIT-VI
Tuned Amplifiers: Introduction, Q-Factor, small signal tuned amplifier, capacitance single tuned amplifier, double tuned amplifiers, effect of cascading single tuned amplifiers on band width, effect of cascading double tuned amplifiers on band width, staggered tuned amplifiers, stability of tuned amplifiers, wideband amplifiers.

TEXT BOOKS:

REFERENCES:
II Year – II SEMESTER

MANAGEMENT SCIENCE

UNIT – I:
(*The Learning objective of this Unit is to understand the concept and nature of Management, Evolution of Management theories, Motivation and leadership Styles).

(**The learner is able to understand the concept and functions of Management, and Theories of Motivation, Styles of Leadership)

UNIT – II:
(The Learning objective of this Unit is to Equip with the concepts of Operations, project management and inventory control).

(**The learner is able to understand the main idea of Inspection and scrutinize the different methods of inspection, the concept of Inventory Management and Control and Inventory Pricing).

UNIT – III:
(* The Objective of this unit is to understand the main functional areas of organization i.e., Financial Management, Production Management, Marketing Management, Human Resource Management, and Product Life Cycles and Channels of Distribution).

(**At the end of this chapter the learner is able to understand the different functional areas in an organization and their responsibilities – Product Life Cycle and Channels of Distribution.).

UNIT – IV:
(*The objective of this unit is to equip with the concept and practical issues relating to Strategic Management)

(**The learner is able to familiar with the meaning of Vision, Mission, Goals and Strategies of the Organization and to implement successfully).

UNIT – V:
(*The objective of this unit is to understand the need and importance of Business Ethics and Communication Skills in Contemporary situations).

Business Ethics & Communications: Ethics in Business and Management – Ethics in HRM, Finance & Marketing Management – Business Ethics & Law
(** The Learner is able to know the practical Issues of Business Ethics in various functional areas, to improve Report Writing skills and Understand the Communication Process).

UNIT – VI:
(*The Learning objective of this unit is to equip with the contemporary management practices, i.e., MIS, MRP, JIT and ERP etc.,)

(**The Learner is able to Understand the various contemporary issues in Management Practices like TQM and BPO etc.,)

Note: *Learning Objective
** Learning Assessment

TEXT BOOKS

REFERENCES
II Year – II SEMESTER

T P C
3+1 0 3

RANDOM VARIABLES & STOCHASTIC PROCESSES

UNIT I

UNIT II

UNIT III
OPERATIONS ON MULTIPLE RANDOM VARIABLES: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variables case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT IV
UNIT V

UNIT VI

TEXT BOOKS:

REFERENCES:
II Year – II SEMESTER

T P C
3+1 0 3

SWITCHING THEORY AND LOGIC DESIGN

UNIT – I

REVIEW OF NUMBER SYSTEMS & CODES:

i) Representation of numbers of different radix, conversion from one radix to another radix, r-1’s compliments and r’s compliments of signed members, problem solving.

ii) 4 bit codes, BCD, Excess-3, 2421, 84-2-1 9’s compliment code etc.,

iii) Logic operations and error detection & correction codes: Basic logic operations - NOT, OR, AND, Universal building blocks, EX-OR, EX-NOR - Gates, Standard SOP and POS. Forms, Gray code, error detection, error correction codes (parity checking, even parity, odd parity, Hamming code) NAND-NAND and NOR-NOR realizations.

UNIT – II

MINIMIZATION TECHNIQUES:

Boolean theorems, principle of complementation & duality, De-morgan theorems, minimization of logic functions using Boolean theorems, minimization of switching functions using K-Map up to 6 variables, tabular minimization, problem solving (code-converters using K-Map etc.).

UNIT – III

COMBINATIONAL LOGIC CIRCUITS DESIGN:

Design of Half adder, full adder, half subtractor, full subtractor, applications of full adders, 4-bit binary subtractor, adder-subtractor circuit, BCD adder circuit, Excess 3 adder circuit, look-a-head adder circuit, Design of decoder, demultiplexer, 7 segment decoder, higher order demultiplexing, encoder, multiplexer, higher order multiplexing, realization of Boolean functions using decoders and multiplexers, priority encoder, 4-bit digital comparator.
UNIT – IV

INTRODUCTION OF PLD’s :
PROM, PAL, PLA-Basics structures, realization of Boolean function with PLDs, programming tables of PLDs, merits & demerits of PROM, PAL, PLA comparison, realization of Boolean functions using PROM, PAL, PLA, programming tables of PROM, PAL, PLA.

UNIT – V

SEQUENTIAL CIRCUITS I:
Classification of sequential circuits (synchronous and asynchronous); basic flip-flops, truth tables and excitation tables (nand RS latch, nor RS latch, RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals). Conversion from one flip-flop to flip-flop. Design of ripple counters, design of synchronous counters, Johnson counter, ring counter. Design of registers - Buffer register, control buffer register, shift register, bi-directional shift register, universal shift register.

UNIT – VI

SEQUENTIAL CIRCUITS II:
Finite state machine; Analysis of clocked sequential circuits, state diagrams, state tables, reduction of state tables and state assignment, design procedures. Realization of circuits using various flip-flops. Meelay to Moore conversion and vice-versa.

TEXT BOOKS:
2. Switching Theory and Logic Design by A. Anand Kumar
3. Digital Design by Mano PHI.

REFERENCE BOOKS:
1. Modern Digital Electronics by RP Jain, TMH.
II Year – II SEMESTER

EM WAVES AND TRANSMISSION LINES

UNIT I

UNIT II

UNIT III

UNIT IV
EM Wave Characteristics – II: Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection,

UNIT VI

UNIT VI

TEXT BOOKS :

REFERENCES :
II Year – II SEMESTER

ANALOG COMMUNICATIONS

UNIT I
AMPLITUDE MODULATION: Introduction to communication system, Need for modulation, Frequency Division Multiplexing, Amplitude Modulation, Definition, Time domain and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, square law Modulator, Switching modulator, Detection of AM Waves; Square law detector, Envelope detector.

UNIT II

UNIT III

UNIT IV
NOISE: Noise in Analog communication System, Noise in DSB & SSB
System, Noise in AM System, Noise in Angle Modulation System, Threshold effect in Angle Modulation System, Pre-emphasis & de-emphasis.

UNIT V

UNIT VI
PULSE MODULATION : Time Division Multiplexing, Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation & demodulation of PWM, PPM, Generation and demodulation of PPM, TDM Vs FDM.

TEXT BOOKS:

REFERENCES:
II Year – II SEMESTER

ELECTRONIC CIRCUIT ANALYSIS LAB

Note: The students are required to design the electronic circuit and they have to perform the simulation using Multisim/ Pspice/Equivalent Licensed simulation software tool. Further they are required to verify the result using necessary hardware in the hardware laboratory.

PART A: List of Experiments:(Minimum of Ten Experiments has to be performed)

1. Determination of \(f_T \) of a given transistor.
2. Voltage-Series Feedback Amplifier
3. Current-Shunt Feedback Amplifier
4. RC Phase Shift/Wien Bridge Oscillator
5. Hartley/Colpitt’s Oscillator
6. Two Stage RC Coupled Amplifier
7. Darlington Pair Amplifier
8. Bootstrapped Emitter Follower
9. Class A Series-fed Power Amplifier
10. Transformer-coupled Class A Power Amplifier
11. Class B Push-Pull Power Amplifier
12. Complementary Symmetry Class B Push-Pull Power Amplifier
13. Single Tuned Voltage Amplifier
14. Double Tuned Voltage Amplifier

PART B: Equipment required for Laboratory

Software:
1. Multisim/ Pspice/Equivalent Licensed simulation software tool
2. Computer Systems with required specifications

Hardware:
1. Regulated Power supplies
2. Analog/Digital Storage Oscilloscopes
3. Analog/Digital Function Generators
4. Digital Multimeters
5. Decade Résistance Boxes/Rheostats
6. Decade Capacitance Boxes
7. Ammeters (Analog or Digital)
8. Voltmeters (Analog or Digital)
Active & Passive Electronic Components
II Year – II SEMESTER

ANALOG COMMUNICATIONS LAB

List of Experiments (Twelve experiments to be done) - (a. Hardware, b. MATLAB Simulink, c. MATLAB Communication tool box)

A. Amplitude Modulation - Mod. & Demod.
B. AM - DSB SC - Mod. & Demod.
C. Spectrum Analysis of Modulated signal using Spectrum Analyser
D. Diode Detector
E. Pre-emphasis & De-emphasis
F. Frequency Modulation - Mod. & Demod.
G. AGC Circuits
H. Sampling Theorem
I. Pulse Amplitude Modulation - Mod. & Demod.
J. PWM , PPM - Mod. & Demod.
K. PLL

Equipments & Software required:

Software :
1. Computer Systems with latest specifications
2. Connected in Lan (Optional)
3. Operating system (Windows XP)
4. Simulations software (Simulink & MATLAB)

Equipment:
1. RPS - 0 – 30 V
2. CRO - 0 – 20 M Hz.
3. Function Generators - 0 – 1 M Hz
4. Components
5. Multimeters
6. Spectrum Analyser
III Year – I SEMESTER

PULSE AND DIGITAL CIRCUITS

OBJECTIVES
The student will be made
- To understand the concept of wave shaping circuits, Switching Characteristics of diode and transistor.
- To analyze different types of Multi vibrators and their design procedures.
- To Introduce to Time-base Generators and Principles of Synchronization and Frequency division.
- To Understand Sampling Gates and to Design NAND and NOR gates using various logic families.

UNIT I
LINEAR WAVE SHAPING: High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs. RC network as differentiator and integrator, attenuators, its applications in CRO probe, RL and RLC circuits and their response for step input, Ringing circuit.

UNIT II
NON-LINEAR WAVE SHAPING: Diode clippers, Transistor clippers, clipping at two independent levels, Transfer characteristics of clippers, Emitter coupled clipper, Comparators, applications of voltage comparators, clamping operation, clamping circuits using diode with different inputs, Clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage, Transfer characteristics of clammers.

UNIT III
SWITCHING CHARACTERISTICS OF DEVICES: Diode as a switch, piecewise linear diode characteristics, Transistor as a switch, Break down voltage consideration of transistor, saturation parameters of Transistor and their variation with temperature, Design of transistor switch, transistor-switching times.
Digital Logic gate circuits: Realization of Logic Gates using DTL, TTL, ECL and CMOS logic circuits, Comparison of logic families.

UNIT IV
MULTIVIBRATORS:
Bistable Multi Vibrator: Analysis and Design of Fixed Bias, Self Bias Bistable Multi Vibrator, Collector catching Diodes, Commutating Capacitors,
Methods of Triggering using RC network & Diode, Emitter Coupled Bistable Multi Vibrator (Schmitt trigger).

Astable Multi Vibrator: Analysis and Design of Collector Coupled Astable Multi vibrator, Application of Astable Multi Vibrator as a Voltage to Frequency Converter. All circuits are transistor version.

UNIT V
VOLTAGE TIME BASE GENERATORS: General features of a time base signal, methods of generating time base waveform, Miller and Bootstrap time base generators – basic principles, Transistor Miller time base generator, Transistor Bootstrap time base generator.

UNIT VI
SYNCHRONIZATION AND FREQUENCY DIVISION & SAMPLING GATES: Principles of Synchronization, Frequency division in sweep circuit, Astable relaxation circuits, Monostable relaxation circuits, Synchronization of a sweep circuit with symmetrical signals. Basic operating principles of sampling gates, Unidirectional and Bi-directional sampling gates, Reduction of pedestal in gate circuits, Applications of sampling gates.

TEXT BOOKS:

REFERENCES:

OUTCOMES
After going through this course the student will be able to
- Design linear and non-linear wave shaping circuits.
- Apply the fundamental concepts of wave shaping for various switching and signal generating circuits.
- Design different multivibrators and time base generators.
III Year – I SEMESTER

LINEAR IC APPLICATIONS

OBJECTIVES
The student will

- Study characteristics, realize circuits, design for signal analysis using Op-amp ICs.
- Study the linear and non-linear applications of operational amplifiers.
- Study IC 555 timer, PLL and VCO with their applications.
- Study and understand different types of ADCs and DACs.
- Acquire skills required for designing and testing integrated circuits.

UNIT I

UNIT II

UNIT III

UNIT IV
Four Quadrant multiplier, balanced modulator, IC1496, Applications of analog switches and Multiplexers, Sample & Hold amplifiers.

UNIT V

UNIT VI
DIGITAL TO ANALOG AND ANALOG TO DIGITAL CONVERTERS: Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, Different types of ADCs – parallel Comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC. DAC and ADC Specifications, Specifications AD 574 (12 bit ADC).

TEXT BOOKS:

REFERENCES:
2. OP AMPS and Linear Integrated Circuits concepts and Applications, James M Fiore, Cenage Learning India Ltd.

OUTCOMES
After going through this course the student will be able to
- Design circuits using operational amplifiers for various applications.
- Analyze and design amplifiers and active filters using Op-amp.
- Acquire skills required for designing and testing integrated circuits
- Understand the gain-bandwidth concept and frequency response of the three basic amplifiers. Understand thoroughly the operational amplifiers with linear integrated circuits.
- Design combinational logic circuits for different applications.
III Year – I SEMESTER

CONTROL SYSTEMS

OBJECTIVES
The student will

- Learn the fundamental concepts of Control systems and mathematical modelling of the system.
- Study the concepts of time response and frequency response of the system.
- Understand the basics of stability analysis of the system.

UNIT I
INTRODUCTION
Concepts of Control Systems- Open Loop and closed loop control systems and their differences- Different examples of control systems- Classification of control systems, Feed-Back Characteristics, Effects of feedback. Mathematical models – Differential equations, Impulse Response and transfer functions - Translational and Rotational mechanical systems

UNIT II
TRANSFER FUNCTION REPRESENTATION
Transfer Function of DC Servo motor - AC Servo motor- Synchro transmitter and Receiver, Block diagram representation of systems considering electrical systems as examples -Block diagram algebra – Representation by Signal flow graph - Reduction using mason’s gain formula.

UNIT III
TIME RESPONSE ANALYSIS

UNIT IV
STABILITY ANALYSIS IN S-DOMAIN
The concept of stability – Routh’s stability criterion – qualitative stability and
conditional stability – limitations of Routh’s stability.

Root Locus Technique:
The root locus concept - construction of root loci-effects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT V
FREQUENCY RESPONSE ANALYSIS
Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin and Gain margin-Stability Analysis from Bode Plots.

STABILITY ANALYSIS IN FREQUENCY DOMAIN:
Polar Plots, Nyquist Plots Stability Analysis.

UNIT VI
CLASSICAL CONTROL DESIGN TECHNIQUES

TEXT BOOKS:

REFERENCE BOOKS:

OUTCOMES
After going through this course the student will be able to
- Represent the mathematical model of a system.
- Determine the response of different order systems for various step inputs.
- Analyse the stability of the system.
OBJECTIVES
The student will be introduced to
- The electrical behavior of CMOS both in static and dynamic conditions and before that study the diode/transistor-transistor logic and Emitter coupled logic.
- In this course, students can study Integrated circuits for all digital operational designs like adder, subtractor, multipliers, multiplexers, registers, counters, flip flops, encoders, decoders and memory elements like RAM and ROM.
- Design and to develop the internal circuits for different digital operations and simulate them using hardware languages using integrated circuits.
- Understand the concepts of SSI Latches and Flip-Flops and Design of Counters using Digital ICs, modeling of sequential logic integrated circuits using VHDL.

Unit-I:
Digital Design Using HDL: Design flow, program structure, History of VHDL, VHDL requirements, Levels of Abstraction, Elements of VHDL, Concurrent and Sequential Statements, Packages, Libraries and Bindings, Objects and Classes, Subprograms, Comparison of VHDL and Verilog HDL.

Unit-II:

Unit-III:
Programmable Logic Devices (PLDs) & Memories: Programmable Read Only Memory, Programmable Logic Array, Programmable Array Logic Devices, ROM: Internal structure, 2D-Decoding, Commercial ROM types, timing and applications,. Static RAM: Internal structure, SRAM timing, standard, synchronous SRAMS, Dynamic RAM: Internal structure, timing, synchronous DRAMs. Design considerations of PLDs with relevant Digital ICs.

Unit-IV:
Digital Logic Families and Interfacing: Introduction to logic families, CMOS logic, CMOS steady state and dynamic electrical behavior, CMOS...
logic families. Bipolar logic, transistor-transistor logic, TTL families, CMOS/TTL interfacing, low voltage CMOS logic and interfacing, Emitter coupled logic.

Unit-V:
Combinational Logic Design: Adders & Subtractors, Ripple Adder, Look Ahead Carry Generator, Binary Parallel Adder, Binary Adder-Subtractor, ALU, Decoders, encoders, three state devices, multiplexers and demultiplexers, Code Converters, parity circuits, comparators, multipliers, Barrel Shifter, Simple Floating-Point Encoder, Cascading Comparators, Dual Priority Encoder, Design considerations with relevant Digital ICs, modeling of Circuits by using VHDL.

Unit-VI:
Sequential Logic Design: SSI Latches and Flip-Flops, Counters, Design of Counters using Digital ICs, Ring Counter, Johnson Counter, Modulus N Synchronous Counters, MSI Registers, Shift Registers, Modes of Operation of Shift Registers, Universal Shift Registers, MSI Shift Registers, Design considerations with relevant Digital ICs, modeling of circuits by using VHDL.

TEXT BOOKS:

REFERENCES:

OUTCOMES:
After going through this course the student will be able to
- Understand the concepts of different logics and implementations using Integrated circuits.
- Design and analyze any Digital design in real time applications.
- Extend the digital operations to any width by connecting the ICs and can also design, simulate their results using hardware description language.
- Understand the concepts of MSI Registers and Modes of Operation of Shift Registers, Universal Shift Registers.

OBJECTIVES
The student will be able to
- understand the applications of the electromagnetic waves in free space.
- introduce the working principles of various types of antennas
- discuss the major applications of antennas with an emphasis on how antennas are employed to meet electronic system requirements.
- understand the concepts of radio wave propagation in the atmosphere.

UNIT I
ANTENNA FUNDAMENTALS: Introduction, Radiation Mechanism – single wire, 2 wire, dipoles, Current Distribution on a thin wire antenna. Antenna Parameters - Radiation Patterns, Patterns in Principal Planes, Main Lobe and Side Lobes, Beamwidths, Polarization, Beam Area, Radiation Intensity, Beam Efficiency, Directivity, Gain and Resolution, Antenna Apertures, Aperture Efficiency, Effective Height, illustrated Problems.

UNIT II
THIN LINEAR WIRE ANTENNAS: Retarded Potentials, Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Evaluation of Field Components, Power Radiated, Radiation Resistance, Beamwidths, Directivity, Effective Area and Effective Height. Natural current distributions, fields and patterns of Thin Linear Center-fed Antennas of different lengths, Radiation Resistance at a point which is not current maximum. Antenna Theorems – Applicability and Proofs for equivalence of directional characteristics, Loop Antennas: Small Loops - Field Components, Comparison of far fields of small loop and short dipole, Concept of short magnetic dipole, D and R_r relations for small loops.

UNIT III
ANTENNA ARRAYS: 2 element arrays – different cases, Principle of Pattern Multiplication, N element Uniform Linear Arrays – Broadside, End-fire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison; Concept of Scanning Arrays. Directivity

UNIT IV

UNIT V

UNIT VI
TEXT BOOKS

REFERENCES

OUTCOMES
After going through this course the student will be able to
• Identify basic antenna parameters.
• Design and analyze wire antennas, loop antennas, reflector antennas, lens antennas, horn antennas and microstrip antennas
• Quantify the fields radiated by various types of antennas
• Design and analyze antenna arrays
• Analyze antenna measurements to assess antenna’s performance
• Identify the characteristics of radio wave propagation
III Year – I SEMESTER

Pulse & Digital Circuits Lab

1. Linear wave shaping.
2. Non Linear wave shaping – Clippers.
3. Non Linear wave shaping – Clampers.
4. Transistor as a switch.
5. Study of Logic Gates & Some applications.
6. Study of Flip-Flops & some applications.
7. Sampling Gates.
8. Astable Multivibrator.
12. UJT Relaxation Oscillator.

EQUIPMENT REQUIRED FOR LABORATORY:

1. RPS - 0 – 30 V
2. CRO - 0 – 20 M Hz.
3. Function Generators - 0 – 1 M Hz
4. Components
5. Multi Meters
III Year – I SEMESTER

LIC APPLICATIONS LAB

Minimum Twelve Experiments to be conducted:

1. Study of ICs – IC 741, IC 555, IC 565, IC 566, IC 1496 – functioning, parameters and Specifications.
2. OP AMP Applications – Adder, Subtractor, Comparator Circuits.
3. Integrator and Differentiator Circuits using IC 741.
4. Active Filter Applications – LPF, HPF (first order)
5. Active Filter Applications – BPF, Band Reject (Wideband) and Notch Filters.
6. IC 741 Oscillator Circuits – Phase Shift and Wien Bridge Oscillators.
7. Function Generator using OP AMPS.
8. IC 555 Timer – Monostable Operation Circuit.
9. IC 555 Timer – Astable Operation Circuit.
11. IC 565 – PLL Applications.
12. IC 566 – VCO Applications.
13. Voltage Regulator using IC 723.
15. 4 bit DAC using OP AMP.

EQUIPMENT REQUIRED FOR LABORATORIES:

1. RPS
2. CRO
3. Function Generator
4. Multi Meters
5. IC Trainer Kits (Optional)
6. Bread Boards
7. Components:- IC741, IC555, IC565, IC1496, IC723, 7805, 7809, 7912 and other essential components.
8. Analog IC Tester

III Year – I SEMESTER

Digital System Design & DICA Laboratory

The students are required to design and draw the internal structure of the following Digital Integrated Circuits and to develop VHDL source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer. Further, it is required to verify the logic with necessary hardware.

List of Experiments:
1. Realization of Logic Gates
2. 3 to 8 Decoder- 74138
3. 8*1 Multiplexer-74151 and 2*1 De-multiplexer-74155
4. 4-Bit Comparator-7485.
5. D Flip-Flop- 7474
6. Decade Counter- 7490
7. 4 Bit Counter-7493
8. Shift Register-7495
9. Universal shift register-74194/195
10. Ram (16*4)-74189 (read and write operations)
11. ALU

Equipment Required:
1. Xilinx ISE software-latest version
2. Personal computer with necessary peripherals
3. Hardware kits- Various FPGA families.
Unit I

Unit II

Unit III

Unit IV

Unit V

Unit VI

REFERENCE BOOKS:

3. Cyber Law. Texts & Cases, South-Western’s Special Topics Collections
III Year – II SEMESTER

T P C
3+1 0 3

MICRO PROCESSORS AND MICRO CONTROLLERS

OBJECTIVES: The student will
- learn concepts of microprocessor, different addressing modes and programming of 8086.
- understand interfacing of 8086, with memory and other peripherals.
- learn concept of DMA, USART RS-232 and PIC controller.
- study the features of advanced processors and Pentium processors.
- study the features of 8051 Microcontroller, its instruction set and also other controllers.

UNIT-I: 8086/8088 MICROPROCESSORS
Register organization of 8086, Architecture, signal description of 8086, physical memory organization, general bus operation, I/O addressing capability, special purpose activities, Minimum mode, maximum mode of 8086 system and timings, the processor 8088, machine language instruction formats, addressing mode of 8086, instruction set off 8086, assembler directives and operators.

UNIT-II: PROGRAMMING WITH 8086 MICROPROCESSOR
Machine level programs, programming with an assembler, Assembly language programs, introduction to stack, stack structure of 8086/8088, interrupts and interrupt service routines, interrupt cycle of 8086, non-mask able interrupt and mask able interrupts, interrupt programming.

UNIT-III: BASIC AND SPECIAL PURPOSE Programmable PERIPHERALS AND THEIR INTERFACING WITH 8086/88
Semiconductor memory interfacing, dynamic RAM interfacing, interfacing i/o ports, PIO 8255 modes of operation of 8255, interfacing to D/A and A/D converters, stepper motor interfacing, control of high power devices using 8255. Programmable interrupt controller 8259A, the keyboard/display controller 8279, programmable communication interface 8251 USART, DMA Controller 8257.

UNIT-IV: ADVANCED MICRO PROCESSORS
Salient features of 0386DX, architecture and signal description of 80386, register organization of 80386 and addressing modes, data types of 80386,
real address mode of 80386, protected mode of 80386, segmentation and Paging, virtual 8086 mode and enhanced mode. Instruction set of 80386. The coprocessor 80387.

UNIT-V: 8051 MICROCONTROLLER
Introduction to microcontrollers, 8051 Microcontrollers, 8051 pin description, connections, I/O ports and memory organization, MCS51 addressing modes and instructions, assembly language programming tools.

UNIT-VI: PIC MICROCONTROLLERS AND ARM 32-BIT MICROCONTROLLER
Overview and features, PIC16Cx/7X instructions, interrupts in PIC 16C61/71, PIC 16F8XX Flash controllers, I/O ports and timers. Introduction to 16/32 Bit processors, ARM architecture and organization, ARM / Thumb programming model, ARM / Thumb instruction set.

TEXT BOOKS:

REFERENCES:

OUTCOMES
After going through this course the student will be able to
- develop programs for different addressing modes.
- perform 8086 interfacing with different peripherals and implement programs.
- describe the key features of serial and parallel communication and able to
- Design a microcontroller for simple applications.
OBJECTIVES
The student will be able to
• Define and use Discrete Fourier Transforms (DFTs)
• Use Z - transforms and discrete time Fourier transforms to analyze a digital system.
• Understand simple finite impulse response filters
• Learn the design procedures used for filter bank
• Learn to program a DSP processor to filter signals

UNIT I
INTRODUCTION: Introduction to Digital Signal Processing: Discrete time signals & sequences, linear shift invariant systems, stability, and causality. Linear constant coefficient difference equations. Frequency domain representation of discrete time signals and systems.

UNIT II

UNIT III
REALIZATION OF DIGITAL FILTERS: Review of Z-transforms, Applications of Z – transforms, solution of difference equations - digital filters, Block diagram representation of linear constant-coefficient difference equations, Basic structures of IIR systems, Transposed forms, Basic structures of FIR systems, System function,

UNIT IV

UNIT V
MULTIRATE DIGITAL SIGNAL PROCESSING: Decimation, interpolation, sampling rate conversion, Implementation of sampling rate conversion.
UNIT VI
INTRODUCTION TO DSP PROCESSORS: Introduction to programmable DSPs: Multiplier and Multiplier Accumulator (MAC), Modified Bus Structures and Memory Access schemes in DSPs Multiple access memory, multiport memory, VLSI architecture, Pipelining, Special addressing modes, On-Chip Peripherals. Architecture of TMS 320C5X-Introduction, Bus Structure, Central Arithmetic Logic Unit, Auxiliary Register, Index Register, Block Move Address Register, Parallel Logic Unit, Memory mapped registers, program controller, Some flags in the status registers, On-chip registers, On-chip peripherals.

TEXT BOOKS:

Reference Books:

OUTCOMES
After going through this course the student will be able to
- Estimate the spectra of signals that are to be processed by a discrete time filter, and to verify the performance of a variety of modern and classical spectrum estimation techniques.
- Design and simulate a digital filter
- Design new digital signal processing systems.
- Design and realize FIR, IIR filters
- Program a DSP processor to filter signals
OBJECTIVES
The student will be able to

- understand pulse digital modulation systems such as PCM, DPCM, and DM.
- understand various digital modulation techniques and able to analyze various systems for their performance in terms of probability of error.
- study the concept of entropy and need for source coding.
- study Block codes, cyclic codes and convolution codes.

UNIT I
PULSE DIGITAL MODULATION: Elements of digital communication systems, advantages of digital communication systems, Elements of PCM: Sampling, Quantization & Coding, Quantization error, Companding in PCM systems. Differential PCM systems (DPCM). Delta modulation, its drawbacks, adaptive delta modulation, comparison of PCM and DM systems, noise in PCM and DM systems.

UNIT II
DIGITAL MODULATION TECHNIQUES: Introduction, ASK, FSK, PSK, DPSK, DEPSK, QPSK, M-ary PSK, ASK, FSK, similarity of BFSK and BPSK.

UNIT III
DATA TRANSMISSION: Base band signal receiver, probability of error, the optimum filter, matched filter, probability of error using matched filter, coherent reception, non-coherent detection of FSK, calculation of error probability of ASK, BPSK, BFSK, QPSK.

UNIT IV
INFORMATION THEORY: Discrete messages, concept of amount of information and its properties. Average information, Entropy and its properties. Information rate, Mutual information and its properties.
UNIT V
SOURCE CODING: Introductions, Advantages, Shannon’s theorem, Shanon-Fano coding, Huffman coding, efficiency calculations, channel capacity of discrete and analog Channels, capacity of a Gaussian channel, bandwidth –S/N trade off.

UNIT VI
LINEAR BLOCK CODES: Introduction, Matrix description of Linear Block codes, Error detection and error correction capabilities of Linear block codes, Hamming codes, Binary cyclic codes, Algebraic structure, encoding, syndrome calculation, BCH Codes.

TEXT BOOKS:
1. Digital communications - Simon Haykin, John Wiley, 2005

REFERENCES:

OUTCOMES
After going through this course the student will be able to
- analyze the performance of a Digital Communication System for probability of error and are able to design a digital communication system.
- analyze various source coding techniques
- Compute and analyze Block codes, cyclic codes and convolution codes.
- Design a coded communication system.
III Year – II SEMESTER

MICROWAVE ENGINEERING

OBJECTIVES
The student will

• Understand fundamental electrical characteristics of waveguides and transmission lines through electromagnetic field analysis.
• Understand the basic properties of Polarization and Ferrite materials composition in the case of waveguide components.
• Understand the multiport junction concept for splitting the microwave energy in a desired direction.
• Understand the function, design, and integration of the major microwave components like oscillator, modulator, power amplifier, filter, and mixer in building a Microwave test bench setup for measurements.

UNIT I

UNIT II

UNIT III
WAVEGUIDE COMPONENTS AND APPLICATIONS - I :Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities –

UNIT - IV
MICROWAVE TUBES :Limitations and Losses of conventional tubes at microwave frequencies.

UNIT V
HELIX TWTS: Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT and Suppression of Oscillations, Nature of the four Propagation Constants.
M-type Tubes
Introduction, Cross-field effects, Magnetrons – Different Types, 8-Cavity Cylindrical Travelling Wave.
Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics.

UNIT VI
TEXT BOOKS:

REFERENCES:
4. Microwave Engineering – G.S.N. Raju, I.K. International
5. Microwave and Radar Engineering – G Sasibhushana Rao Pearson

OUTCOMES: After going through this course the student will

- Gain knowledge of transmissionlines and waveguide structures and how they are used as elements in impedance matching and filter circuits.
- Apply analysis methods to determine circuit properties of passive or active microwave devices.
- Gain knowledge and understanding of microwave analysis methods.
- Distinguish between M-type and O-type tubes
- Analyze and measure various microwave parameters using a Microwave test bench
Open Elective

Open Electives:

1. Bio Medical Engineering
2. Fuzzy & Neural Networks
3. Image Processing (not for ECE Students)
4. Principles of Signals, Systems and Communications (Not for ECE Students)
5. Electronic Instrumentation (Not for ECE Students)

Note: ECE Students can also Choose the OPEN ELECTIVES Offered by any Other Department.

BIO-MEDICAL ENGINEERING
(OPEN ELECTIVE)

UNIT-I:

UNIT-II:
UNIT-III:

UNIT-IV:
PATIENT CARE AND MONITORING: Elements of Intensive-Care Monitoring, Patient Monitoring Displays, Diagnosis, Calibration and Repair ability of Patient-Monitoring Equipment, Other Instrumentation for Monitoring Patients, Organization of the Hospital for Patient-Care Monitoring, Pacemakers, Defibrillators, Radio Frequency Applications of Therapeutic use.

Electrophysiological Tests, Ophthalmoscope, Tonometer for Eye Pressure Measurement.
Diathermy, Clinical Laboratory Instruments, Biomaterials, Stimulators.

UNIT-V:

UNIT-VI:
MONITORS, RECORDER AND SHOCK HAZARDS: Biopotential Amplifiers, Monitors, Recorders, Shock Hazards and Prevention,
Physiological Effects and Electrical Current, Shock Hazards from Electrical Equipment, Methods of Accident Prevention, Isolated Power Distribution System.

Text Books:

References:
Image Processing
(OPEN ELECTIVE)

Unit: 1
Introduction to Image Processing:
Digital Imaging System

Digital Imaging System:
Types of File Formats – GIF, JPEG, PNG, DICOM, SVG Structure of TIFF File Format.

Unit: 2
Digital Image Processing Operations:
Digital Image Transforms:

Unit: 3
Image Enhancement:
Image Quality and Need for Image Enhancement, Image Quality Metrics, Image Enhancement Point Operations Linear and
Non-linear Functions, Piecewise Linear Functions, Histogram-based Techniques, Spatial Filtering Concepts, Image Smoothing Spatial Filters and its design, Image Sharpening Spatial Filters Frequency Domain Filtering

Image Restoration: Image Degradation (Restoration) Model, Categories of Image Degradations, Noise Modeling, Blur and Distortions, Image Restoration in the Presence of Noise Only, Mean Filters, Order-statistics Filters, Image Restoration Techniques, Constrained and Unconstrained Methods, Geometrical Transforms for Image Restoration.

Unit: 4

Image Compression:

Lossless Compression Algorithms, Run-length Coding, Huffman Coding, Shannon–Fano Coding, Bit-plane Coding, Arithmetic Coding, Lossless Predictive Coding, Lossy Compression Algorithms, Block Transform Coding, Image and Video Compression standards, JPEG, Video Compression – MPEG.

Unit: 5

Image Segmentation:

Unit: 6

Colour Image Processing:
YUV Model, YIQ Model, Y C_b C_r Colour Model, Printing Colour Models- CMK and CMYK Models.

Colour Quantization – Popularity Algorithm, Median-cut Algorithm, Octree-based Algorithm, Pseudo Colour Image Processing.

Text Books:

Reference Books:
Principles of Signals, Systems and Communications
(OPEN ELECTIVE)

Unit – I

Signal Analysis: Introduction, Fourier Series - Trigonometric Fourier Series, Complex Exponential Fourier Series; Complex Fourier Spectrum – Time Domain and Frequency Domain Representation of a Signal; Fourier Transform - Analysis of a Non Periodic Function over entire interval; Fourier Transform Involving Impulse Function; Properties of Fourier Transform and Significance- Convolution Integral, Fourier Transform of Periodic Functions.

Unit – II

Linear Systems: Introduction; System Function – Representation of a function f(t) and its response r(t), Definition of System Function; Distortionless Transmission – Band width of a system, Rise Time and System Band Width; Energy Signals and Power Signals, Energy and Power Spectral Densities; Correlation – Cross and Auto Correlation and their properties.

Unit – III

Unit – IV

Unit – V

Pulse Modulations: Sampling Theorem – Nyquist Interval, Aliasing, Signal recovery from its sampled version; Flat Top and Natural Sampling, PAM-PAM Modulation and Demodulation, PWM and PPM, Time Division
Multiplexing, Frequency Division Multiplexing and Comparison between TDM and FDM.

Unit – VI

Digital Modulation: ASK, FSK, PSK and DPSK, QPSK demodulation, Coherent and Non-coherent Reception, Comparison of Binary and Quaternary Modulation Schemes, M-ary modulation techniques.

TEXT BOOKS:

REFERENCE BOOKS:

III Year – II SEMESTER

MICROPROCESSORS AND MICROCONTROLLERS LAB

The students are required to develop the necessary Algorithm, Flowchart and Assembly Language Program Source Code for executing the following functions using MASM/TASM software and to verify the results with necessary Hardware Kits.

PART-I: MICROPROCESSOR 8086
1. Introduction to MASM/TASM.
2. Arithmetic operation- Multi byte Addition and Subtraction, Multiplication and Division- Signed and unsigned Arithmetic operation, ASCII- Arithmetic operation.
3. Logic operations-Shift and rotate- Converting packed BCD to unpacked BCD, BCD to ASCII conversion.
4. By using string operation and Instruction prefix: Move Block, Reverse string, Sorting, Inserting, Deleting, Length of the string, String comparison.
5. DOS/BIOS programming : Reading keyboard (Buffered with and without echo) - Display characters, Strings.

PART-II: INTERFACING WITH MICROPROCESSOR
1. 8259 – Interrupt Controller-Generate an interrupt using 8259 timer.
2. 8279 – Keyboard Display- Write a program to display a string of characters.
3. 8255 – PPI-Write ALP to generate sinusoidal wave using PPI.
4. 8251 – USART-Write a program in ALP to establish Communication between two processors.

PART-III: MICROCONTROLLER 8051
1. Reading and Writing on a parallel port.
2. Timer in different modes.
3. Serial communication implementation.
PART-IV: INTERFACING WITH MICROCONTROLLER
Write C programs to interface 8051 chip to Interfacing modules to Develop single chip solutions.

1. Simple Calculator using 6 digit seven segment display and Hex Keyboard interface to 8051.
2. Alphanumeric LCD panel and Hex keypad input interface to 8051.
3. External ADC and Temperature control interface to 8051.
4. Generate different waveforms Sine, Square, Triangular, and Ramp etc. using DAC interface to 8051; change the frequency and Amplitude.

EQUIPMENT REQUIRED FOR LABORATORY

1. MASM/TASM software
2. 8086 Microprocessor Kits
1. 8051 Micro Controller kits
2. Interfaces/peripheral subsystems
 i) 8259 PIC
 ii) 8279-KB/Display
 iii) 8255 PPI
 iv) 8251 USART
5. A/D and D/AC Interface
III Year – II SEMESTER

DIGITAL COMMUNICATIONS LAB

1. Time division multiplexing.
2. Pulse code modulation.
3. Differential pulse code modulation.
4. Delta modulation.
5. Frequency shift keying.
6. Phase shift keying.
8. Companding
9. Source Encoder and Decoder
10. Linear Block Code-Encoder and Decoder
11. Binary Cyclic Code - Encoder and Decoder
12. Convolution Code - Encoder and Decoder

Equipment required for Laboratories:
1. RPS - 0 – 30 V
2. CRO - 0 – 20 M Hz.
3. Function Generators - 0 – 1 M Hz
4. RF Generators - 0 – 1000 M Hz./0 – 100 M Hz.
5. Multimeters
6. Lab Experimental kits for Digital Communication
7. Components
8. Radio Receiver/TV Receiver Demo kits or Trainees.
III Year – II SEMESTER

DIGITAL SIGNAL PROCESSING LAB

LIST OF EXPERIMENTS:

1. To study the architecture of DSP chips – TMS 320C 5X/6X
 Instructions.
2. To verify linear convolution.
3. To verify the circular convolution.
4. To design FIR filter (LP/HP) using windowing technique
 a) Using rectangular window
 b) Using triangular window
 c) Using Kaiser window
5. To Implement IIR filter (LP/HP) on DSP Processors
7. MATLAB program to generate sum of sinusoidal signals.
8. MATLAB program to find frequency response of analog LP/HP filters.
9. To compute power density spectrum of a sequence.
10. To find the FFT of given 1-D signal and plot.

III Year – II SEMESTER

Seminar
OBJECTIVES
The student will be introduced to

- Use mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnects.
- Learn the various fabrication steps of IC and come across basic electrical properties of MOSFET.
- Apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect and to verify the functionality, timing, power and parasitic effects.
- The concepts and techniques of modern integrated circuit design and testing (CMOS VLSI).
- Design static CMOS combinational and sequential logic at the transistor level, including mask layout.

Unit-I:
Introduction: Introduction to IC Technology, MOS and related VLSI Technology, Basic MOS Transistors, Enhancement and Depletion modes of transistor action, IC production processes, MOS and CMOS Fabrication processes, BiCMOS Technology, Comparison between CMOS and Bipolar technologies.

Basic Electrical Properties Of MOS and Bi-CMOS Circuits: \(I_{ds} \) versus \(V_{ds} \) Relationships. Aspects of MOS transistor Threshold Voltage, MOS transistor Trans, Output Conductance and Figure of Merit. The Pass transistor, NMOS Inverter, Pull-up to Pull-down Ratio for NMOS inverter driven by another NMOS inverter. Alternative forms of pull-up, The CMOS Inverter, MOS transistor circuit model, Bi-CMOS Inverter, Latch-up in CMOS circuits and BiCMOS Latch-up Susceptibility.

Unit-II:
MOS and Bi-CMOS Circuit Design Processes: MOS Layers, Stick Diagrams, Design Rules and Layout, General observations on the Design
rules, 2µm Double Metal, Double Poly, CMOS/BiCMOS rules, 1.2µm Double Metal, Double Poly CMOS rules, Layout Diagrams of NAND and NOR gates and CMOS inverter, Symbolic Diagrams-Translation to Mask Form.

Unit-III:

Basic Circuit Concepts: Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, The Delay Unit, Inverter Delays, Propagation Delays, Wiring Capacitances, Fan-in and fan-out characteristics, Choice of layers, Transistor switches, Realization of gates using NMOS, PMOS and CMOS technologies.

Scaling Of MOS Circuits: Scaling models, Scaling factors for device parameters, Limits due to sub threshold currents, current density limits on logic levels and supply voltage due to noise.

Unit-IV:

Subsystem Design: Architectural issues, switch logic, Gate logic, examples of structured design, clocked sequential circuits, system considerations, general considerations of subsystem design processes, an illustration of design processes.

Unit-V:

VLSI Design Issues: VLSI Design issues and design trends, design process, design for testability, technology options, power calculations, package selection, clock mechanisms, mixed signal design, ASIC design flow, FPGA design flow, introduction to SoC design.

Unit-VI:

FPGA Design: Basic FPGA architecture, FPGA configuration, configuration modes, FPGA design process- FPGA design flow, FPGA families, FPGA design examples-stack, queue and shift register implementation using VHDL, step-by-step approach of FPGA design process on Xilinx environment.

Text Books:

References:

OUTCOMES

After going through this course the student will be able to

- Apply the Concept of design rules during the layout of a circuit.
- Model and simulate digital VLSI systems using hardware design language.
- Synthesize digital VLSI systems from register-transfer or higher level descriptions
- Understand current trends in semiconductor technology, and how it impacts scaling and performance.

Objectives
The aim of this course is to introduce key concepts and principles of computer networks. The course will use a top-down approach to study the Internet and its protocol stack. Architecture, protocol, application-examples will include email, web and media-streaming. We will cover communications services (e.g., TCP/IP) required to support such network applications. The implementation and deployment of communications services in practical networks: including wired and wireless LAN environments, will be followed by a discussion of issues of network-security and network-management. Internet’s architecture and protocols will be used as the primary examples to illustrate the fundamental principles of computer networking.

UNIT I
INTRODUCTION
OSI, TCP/IP and other networks models, Examples of Networks: Novell Networks, Arpanet, Internet, Network Topologies WAN, LAN, MAN.

UNIT II
PHYSICAL LAYER
Transmission media copper, twisted pair wireless, switching and encoding asynchronous communications; Narrow band, broad band ISDN and ATM.

UNIT III
DATA LINK LAYER

UNIT IV
NETWORK LAYER
UNIT V
TRANSPORT LAYER
Transport Services, Connection management, TCP and UDP protocols; ATM AAL Layer Protocol.

UNIT VI
APPLICATION LAYER
Network Security, Domain name system, SNMP, Electronic Mail; the World WEB, Multi Media.

TEXT BOOKS

REFERENCES

Outcomes:
The student will be able to
- Analyze a communication system by separating out the different functions provided by the network; and some example networks.
- Understand various network topologies required for communication
- Understand that there are fundamental limits to any communications system;
- Understand the general principles behind addressing, routing, reliable transmission and other stateful protocols as well as specific examples of each;
- Have an informed view of both the internal workings of the Internet and of a number of common Internet applications and protocols.
OBJECTIVES

The student will

- Learn the fundamental concepts and applications of Digital Image Processing.
- Learn the concepts of and how to perform Intensity transformations and spatial filtering.
- Understand the relationship between Filtering in spatial and frequency domains,
- Understand the concepts of and how to perform Image restoration and reconstruction.
- Understand the concepts of different color models and Color image processing.
- Learn the concepts of Wavelets and multi-resolution processing, Image compression and Watermarking, Morphological image processing, Image segmentation, Representation and description.

UNIT-1

Introduction: Origins of digital image processing, uses digital image processing, fundamental steps in digital image processing, components of an image processing system, digital image fundamentals, Elements of visual perception, light and electromagnetic spectrum, imaging sensing and acquisition, image sampling and quantization. Some basic relationships between pixels, an introduction to the mathematical tools used in digital image processing.

UNIT-2

Intensity Transformations and Spatial Filtering: Background, Some basic intensity transformation functions, histogram processing, fundamentals of
spatial filtering, smoothing spatial filters, sharpening spatial filters, Combining spatial enhancement methods, using fuzzy techniques for intensity transformations and spatial filtering.

Filtering in the frequency domain: Preliminary concepts, Sampling and the Fourier transform of sampled functions, the discrete Fourier transform (DFT) of one variable, Extension to functions of two variables, some properties of the 2-D Discrete Fourier transform. The Basic of filtering in the frequency domain, image smoothing using frequency domain filters, Selective filtering, Implementation.

UNIT-3

Image restoration and Reconstruction: A model of the image degradation / Restoration process, Noise models, restoration in the presence of noise only: Spatial Filtering, Periodic Noise Reduction by frequency domain filtering, Linear, Position –Invariant Degradations, Estimation the degradation function, Inverse filtering, Minimum mean square error(Wiener) filtering ,constrained least squares filtering ,geometric mean filtering ,image reconstruction from projections.

Unit-4

Color image processing: color fundamentals, color models, pseudo color image processing, basic of full color image processing, color transformations, smoothing and sharpening. Image segmentation based on color, noise in color images, color image compression.

Unit-5

Wavelets and Multi-resolution Processing: image pyramids, sub band coding & Haar transforms multi resolution expressions, wavelet transforms in one dimensions. The fast wavelets transform, wavelet transforms in two dimensions, wavelet packets.

Image compression: Fundamentals, various compression methods-coding techniques, digital image water marking.

Unit-6

Morphological image processing: preliminaries Erosion and dilation, opening and closing, the Hit-or-miss transformation, some Basic Morphological algorithms, grey –scale morphology

Image segmentation: Fundamentals, point, line, edge detection thresholding, region –based segmentation, segmentation using Morphological watersheds, the use of motion in segmentation.
TEXT BOOKS:

OUTCOMES
After going through this course the student will be able to
- Perform different transforms on image useful for image processing applications
- Perform spatial and frequency domain filtering on image and can implement all smoothing and sharpening operations on images
- Perform image restoration operations/techniques on images
- Operate effectively on color images and different color conversions on images and can code images to achieve good compression
- Do wavelet based image processing and image compression using wavelets
- Perform all morphological operations on images and can be able to do image segmentation also.
- Develop simple algorithms for image processing and use the various techniques involved in Bio Medical applications, etc.
IV Year – I SEMESTER

COMPUTER ARCHITECTURE AND ORGANIZATION

Objectives
The student will
- Understand the fundamentals of different instruction set architectures and their relationship to the CPU design.
- Understand the principles and the implementation of computer arithmetic and ALU.
- Understand the memory system, I/O organization
- Understand the operation of modern CPUs including interfacing, pipelining, memory systems and busses.
- Understand the principles of operation of multiprocessor systems.

UNIT-I

UNIT-II

UNIT-III
MICRO PROGRAMMED CONTROL: Control memory, Address sequencing, micro program example, Design of control unit-Hard wired control. Micro programmed control
UNIT-IV
THE MEMORY SYSTEM: Memory Hierarchy, Main memory, Auxiliary memory, Associative memory, Cache memory, Virtual memory, Memory management hardware

UNIT-V
INPUT-OUTPUT ORGANIZATION: Peripheral Devices, Input-Output Interface, Asynchronous data transfer Modes of Transfer, Priority Interrupt, Direct memory Access, Input –Output Processor (IOP), Serial communication;

UNIT-VI

TEXT BOOKS:

REFERENCES:

Objectives:
- Understand the fundamentals of different instruction set architectures and their relationship to the CPU design.
- Understand the principles and the implementation of computer arithmetic and ALU.
- Understand the memory system, I/O organization
- Understand the operation of modern CPUs including interfacing, pipelining, memory systems and busses.
- Understand the principles of operation of multiprocessor systems.
- Demonstrate the relationship between the software and the hardware and focuses on the foundational concepts that are the basis for current computer design.
Electronics & Communication Engineering

IV Year – I SEMESTER

Elective I

ELECTRONIC SWITCHING SYSTEMS

Objectives:
The student will

- Understand the means of measuring traffic.
- Understand the implication of the traffic level on system design.

UNIT -I:

UNIT -II:
Electronic Space Division Switching: Stored Program Control, Centralized SPC, Distributed SPC, Software Architecture, Application Software, Enhanced Services, Two-Stage Networks, Three-Stage Networks, n- Stage Networks.
Time Division Switching: Basic Time Division Space Switching, Basic Time Division Time Switching, Time Multiplexed Space Switching, Time Multiplexed Time Switching, Combination Switching, Three-Stage Combination Switching, n- Stage Combination Switching.

UNIT -III:
Signaling: Customer Line Signaling, Audio- Frequency Junctions and Trunk Circuits, FDM Carrier Systems, PCM Signaling, Inter- Register Signaling, Common- Channel Signaling Principles, CCITT Signaling System no.6, CCITT Signaling System no.7, Digital Customer Line Signaling.

UNIT -IV:
Packet Switching: Statistical Multiplexing, Local- Area and Wide- Area Networks, Large-scale Networks, Broadband Networks.

UNIT -V: Switching Networks: Single- Stage Networks, Grading, Link Systems, Grades of service of link systems, Application of Graph Theory to link Systems, Use of Expansion, Call Packing, Rearrange-able Networks, Strict- Sense non-blocking Networks, Sectionalized Switching Networks

TEXT BOOKS:
1. Telecommunication Switching Systems and Networks- Thiagarajan Viswanathan, 2000, PHI.

REFERENCES:
2. Data Communications and Networks- Achyut S. Godbole, 2004, TMH.

Outcomes
The student will be able to
- Evaluate the time and space parameters of a switched signal
- Establish the digital signal path in time and space, between two terminals
- Evaluate the inherent facilities within the system to test some of the SLIC, CODEC and digital switch functions.
- Investigate the traffic capacity of the system.
- Evaluate methods of collecting traffic data.
- Evaluate the method of interconnecting two separate digital switches.
ANALOG IC DESIGN
(Elective I)

OBJECTIVES
The student will be introduced to

- The student will be able to understand the behavior of MOS Devices and Small-Signal & Large-Signal Modeling of MOS Transistor and Analog Sub-Circuits.
- In this course, students can study CMOS Amplifiers like Differential Amplifiers, Cascode Amplifiers, Output Amplifiers, and Operational Amplifiers.
- Another main object of this course is to motivate the graduate students to design and to develop the Analog CMOS Circuits for different Analog operations.
- The concepts of Open-Loop Comparators and Different Types of Oscillators like Ring Oscillator, LC Oscillator etc.

UNIT -I:

UNIT -II:
Analog CMOS Sub-Circuits: MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT -III:

UNIT -IV:
UNIT -V:
Comparators: Characterization of Comparator, Two-Stage, Open-Loop Comparators, Other Open-Loop Comparators, Improving the Performance of Open-Loop Comparators, Discrete-Time Comparators.

UNIT -VI:
Oscillators & Phase-Locked Loops: General Considerations, Ring Oscillators, LC Oscillators, Voltage Controlled Oscillators. Simple PLL, Charge Pump PLLs, Non-Ideal Effects in PLLs, Delay Locked Loops, Applications.

Text Books:

References:

OUTCOMES
After going through this course the student will be able to
- Understand the concepts of MOS Devices and Modeling.
- Design and analyze any Analog Circuits in real time applications.
- Extend the Analog Circuit Design to Different Applications in Real Time.
- Understand of Open-Loop Comparators and Different Types of Oscillators.
OBJECT ORIENTED PROGRAMMING & OPERATING SYSTEM
(Elective I)

Course Objectives:
By the end of the course student will
• Describe the general architecture of computers
• Describe object oriented concepts
• Describe, contrast and compare differing structures for operating Systems
• Understand and analyze theory and implementation of: processes, resource control (concurrency etc.), physical and virtual memory, scheduling, I/O and files

UNIT-I:
Introduction to OOP
Introduction, Need of Object Oriented Programming, Principles of Object Oriented Languages, Procedural languages Vs OOP, Applications of OOP.

UNIT-II:
Computer System and Operating System Overview: Overview of computer operating systems, operating systems functions, protection and security, distributed systems, special purpose systems, operating systems structures and systems calls, operating systems generation.

UNIT-III:

UNIT-IV:
Memory Management: Swapping, contiguous memory allocation, paging, structure of the page table, segmentation.

UNIT-V:
Virtual Memory Management:
virtual memory, demand paging, page-Replacement, algorithms, Allocation of Frames, Thrashing.
UNIT-VI:

File system Interface- the concept of a file, Access Methods, Directory structure, File system mounting, file sharing, protection.

TEXT BOOKS:
1. The Complete Reference Java, 8ed, Herbert Schildt, TMH.

REFERENCES:
3. Operating System A Design Approach-Crowley, TMH.

Course Outcomes:
By the end of the course student will be able to
- describe the general architecture of computers
- describe object oriented concepts
- describe, contrast and compare differing structures for operating Systems.
- understand and analyze theory and implementation of: processes, resource control (concurrency etc.), physical and virtual memory, scheduling, I/O and files.
RADAR SYSTEMS
(Elective-I)

OBJECTIVES
The student will be introduced to

• the knowledge of different Antennas systems and communication equipment required for the operation of RADAR.
• different parameters of Transmitter and Receiver of RADAR
• the concept of Doppler Effect to measure parameters of RADAR.
• different types of RADARS and applications based on the type of Transmitters, Receivers, and their functions.

Pre requisites: Antennas and wave propagation; Electromagnetics and Communications

UNIT – I

UNIT – II

UNIT – III
UNIT – IV

UNIT- V

UNIT – VI
Radar Receivers – Noise Figure and Noise Temperature. Displays – types. Duplexer – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas- Basic Concepts, Radiation Pattern. Beam Steering and Beam Width changes, Series versus Parallel Feeds. Applications, Advantages and Limitations.

TEXT BOOKS:

REFERENCES:

OUTCOMES
After going through this course the student will be able to

- Acquire the knowledge to apply and to design required parameters for a RADAR system.
- Apply the techniques learned, to choose suitable RADAR from the available, for the required application.
ADVANCED COMPUTER ARCHITECTURE
(Elective I)

UNIT -I:
Fundamentals of Computer Design:
Fundamentals of Computer design, Changing faces of computing and task of computer designer, Technology trends, Cost price and their trends, Measuring and reporting performance, Quantitative principles of computer design, Amdahl’s law.

Instruction set principles and examples- Introduction, Classifying instruction set- MEmory addressing- type and size of operands, Operations in the instruction set.

UNIT –II:
Pipelines:
Introduction, Basic RISC instruction set, Simple implementation of RISC instruction set, Classic five stage pipe lined RISC processor, Basic performance issues in pipelining, Pipeline hazards, Reducing pipeline branch penalties.

Memory Hierarchy Design:

UNIT -III:
Instruction Level Parallelism the Hardware Approach:
Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo’s approach, Branch prediction, high performance instruction delivery- hardware based speculation.

UNIT-IV
ILP Software Approach
Basic compiler level techniques, Static branch prediction, VLIW approach, Exploiting ILP, Parallelism at compile time, Cross cutting issues -Hardware verses Software.
UNIT –V:
Multi Processors and Thread Level Parallelism:
Multi Processors and Thread level Parallelism- Introduction, Characteristics of application domain, Systematic shared memory architecture, Distributed shared – memory architecture, Synchronization.

UNIT –VI:
Inter Connection and Networks:
Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters.

Intel Architecture: Intel IA-64 ILP in embedded and mobile markets Fallacies and pit falls.

TEXT BOOKS:

REFERENCES:
Electronics & Communication Engineering

IV Year – I SEMESTER

Elective II

OPTICAL COMMUNICATIONS

OBJECTIVES
The student will be introduced to

- the functionality of each of the components that comprise a fiber-optic communication system
- the properties of optical fiber that affect the performance of a communication link and types of fiber materials with their properties and the losses occur in fibers.
- the principles of single and multi-mode optical fibers and their characteristics
- working of semiconductor lasers, and differentiate between direct modulation and external electro-optic modulation.
- Analyze the operation of LEDs, laser diodes, and PIN photo detectors (spectral properties, bandwidth, and circuits) and apply in optical systems.
- Analyze and design optical communication and fiber optic sensor systems.
- the models of analog and digital receivers.

UNIT I
Overview of optical fiber communication - Historical development, The general system, advantages of optical fiber communications. Optical fiber wave guides- Introduction, Ray theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays, Cylindrical fibers- Modes, V-number, Mode coupling, Step Index fibers, Graded Index fibers, Single mode fibers- Cut off wavelength, Mode Field Diameter, Effective Refractive Index, Related problems.

UNIT II
Fiber materials:- Glass, Halide, Active glass, Chalgenide glass, Plastic optical fibers. Signal distortion in optical fibers- Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses, Information capacity

UNIT III
Optical fiber Connectors-Connector types, Single mode fiber connectors, Connector return loss, Fiber Splicing- Splicing techniques, Splicing single mode fibers, Fiber alignment and joint loss- Multimode fiber joints, single mode fiber joints.

UNIT IV

UNIT V
Source to fiber power launching - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Laser diode to fiber coupling, Optical receiver operation- Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of Error, Quantum limit, Analog receivers.

UNIT VI
Optical system design - Point-to- point links- Component choice and considerations, Link power budget, Rise time budget with examples, Line coding in Optical links, WDM, Necessity, Principles, Measurement of Attenuation and Dispersion, Eye pattern.

TEXT BOOKS :

REFERENCES :

OUTCOMES
After going through this course the student will be able to

- Choose necessary components required in modern optical communications systems.
- Design and build optical fiber experiments in the laboratory, and learn how to calculate electromagnetic modes in waveguides, the amount of light lost going through an optical system, dispersion of optical fibers.
- Use different types of photo detectors and optical test equipment to analyze optical fiber and light wave systems.
- Choose the optical cables for better communication with minimum losses.
- Design, build, and demonstrate optical fiber experiments in the laboratory.
DIGITAL IC DESIGN
(Elective II)

OBJECTIVES

• The student will be able to understand the MOS Design.
• In this course, students can study Combinational MOS Logic Circuits and Sequential MOS Logic Circuits.
• Another main object of this course is to motivate the graduate students to design and to develop the Digital Integrated Circuits for different Applications.
• The concepts of Semiconductor Memories, Flash Memory, RAM array organization.

UNIT-I:

MOS Design: Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.

UNIT-II:

Combinational MOS Logic Circuits: MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates, AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates.

UNIT-III:

Sequential MOS Logic Circuits: Behaviour of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop.

UNIT-IV:

UNIT-V:

Interconnect: Capacitive Parasitics, Resistive Parasitics, Inductive Parasitics, Advanced Interconnect Techniques.

UNIT-VI:

Semiconductor Memories: Memory Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory- NOR flash and NAND flash.

Text Books:

References:

OUTCOMES

After going through this course the student will be able to

- Understand the concepts of MOS Design.
- Design and analysis of Combinational and Sequential MOS Circuits.
- Extend the Digital IC Design to Different Applications.
- Understand the Concepts of Semiconductor Memories, Flash Memory, RAM array organization.
SPEECH PROCESSING
(ELECTIVE – II)

UNIT –I:
Fundamentals of Digital Speech Processing:

UNIT –II:
Time Domain Models for Speech Processing:
Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate, Speech Vs Silence discrimination using energy and zero crossing, Pitch period estimation using a parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

UNIT –III:
Linear Predictive Coding (LPC) Analysis:

UNIT –IV:
Homomorphic Speech Processing:

UNIT-V
Speech Enhancement:
Nature of interfering sounds, Speech enhancement techniques: Single

UNIT-VI:

Automatic Speech & Speaker Recognition:
Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System.

Hidden Markov Model (HMM) for Speech:
Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS,

Speaker Recognition:
Recognition techniques, Features that distinguish speakers, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System.

TEXT BOOKS:

REFERENCE BOOKS:
Artificial Neural Networks and Fuzzy Logic
(Elective II)

1. Introduction to Neural Networks

Essentials of Artificial Neural Networks
Artificial Neuron Model, Operations of Artificial Neuron, Types of Neuron Activation Function, ANN Architectures, Classification Taxonomy of ANN-Connectivity, Neural Dynamics (Activation and Synaptic), Learning Strategy (Supervised, Unsupervised, Reinforcement), Learning Rules, Types of Application.

2. Feed Forward Neural Networks
Multilayer Feed Forward Neural Networks

3. Associative Memories
Paradigms of Associative Memory, Pattern Mathematics, Hebbian Learning, General Concepts of Associative Memory Associative Matrix, Association Rules, Hamming Distance, The Linear Associator, Matrix Memories, Content Addressable Memory, Bidirectional Associative Memory (BAM) Architecture, BAM Training Algorithms: Storage and Recall Algorithm,

4. **Self-Organizing Maps (SOM) and Adaptive Resonance Theory (ART)**

5. **Classical & Fuzzy Sets**
 Introduction to classical sets – properties, Operations and relations; Fuzzy sets, Membership, Uncertainty, Operations, Properties, fuzzy relations, cardinalities, membership functions.

6. **Fuzzy Logic System Components**
 Fuzzification, Membership Value assignment, development of rule base and decision making system, Defuzzification to crisp sets, Defuzzification methods.

Applications:

Fuzzy logic applications: Fuzzy logic control and Fuzzy classification.

Text Books:

1. Neural Networks, Fuzzy logic & Genetic algorithms: synthesis and applications by Rajasekharan and Rai- PHI Publication.

Reference Books:

2. Neural Networks – James A Freeman and Davis Skapura, Pearson, 2002
3. Neural Networks – Simon Hykins, Pearson Education.
4. Neural Engineering by C. Eliasmith and CH. Anderson, PHI.
 Neural Networks and Fuzzy Logic System by Brok Kosko, PHI Publications.
NETWORK SECURITY & CRYPTOGRAPHY
(Elective-II)

Course objectives:
The main objective of this course is to teach students to understand and how to address various software security problems in a secure and controlled environment. During this course the students will gain knowledge (both theoretical and practical) in various kinds of software security problems, and techniques that could be used to protect the software from security threats. The students will also learn to understand the “modus operandi” of adversaries; which could be used for increasing software dependability.

Course outcomes:
1. be able to individually reason about software security problems and protection techniques on both an abstract and a more technically advanced level.
2. be able to individually explain how software exploitation techniques, used by adversaries, function and how to protect against them.

Syllabus:

UNIT I: Classical Encryption Techniques
Objectives: The Objectives of this unit is to present an overview of the main concepts of cryptography, understand the threats & attacks, understand ethical hacking.

Introduction: Security attacks, services & mechanisms, Symmetric Cipher Model, Substitution Techniques, Transportation Techniques, Cyber threats and their defense (Phishing Defensive measures, web based attacks, SQL injection & Defense techniques) TEXT BOOK 2), Buffer overflow & format string vulnerabilities, TCP session hijacking (ARP attacks, route table modification) UDP hijacking (man-in-the-middle attacks) (TEXT BOOK3).

UNIT II: Block Ciphers & Symmetric Key Cryptography
Objectives: The Objectives of this unit is to understand the difference between stream ciphers & block ciphers, present an overview of the Feistel Cipher and explain the encryption and decryption, present an overview of DES, Triple DES, Blowfish, IDEA.

Traditional Block Cipher Structure, DES, Block Cipher Design Principles,
AES-Structure, Transformation functions, Key Expansion, Blowfish, CAST-128, IDEA, Block Cipher Modes of Operations.

UNIT III: Number Theory & Asymmetric Key Cryptography
Objectives: Presents the basic principles of public key cryptography, Distinct uses of public key cryptosystems.

Number Theory: Prime and Relatively Prime Numbers, Modular Arithmetic, Fermat’s and Euler’s Theorems, The Chinese Remainder theorem, Discrete logarithms.

UNIT IV: Cryptographic Hash Functions & Digital Signatures
Objectives: Present overview of the basic structure of cryptographic functions, Message Authentication Codes, Understand the operation of SHA-512, HMAC, Digital Signature

UNIT V: User Authentication, Transport Layer Security & Email Security
Objectives: Present an overview of techniques for remote user authentication, Kerberos, Summarize Web Security threats and Web traffic security approaches, overview of SSL & TLS. Present an overview of electronic mail security.

User Authentication: Remote user authentication principles, Kerberos
Transport Level Security: Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security (TLS), Secure Shell(SSH)
Electronic Mail Security: Pretty Good Privacy (PGP) and S/MIME.

UNIT VI: IP Security & Intrusion Detection Systems
Objectives: Provide an overview of IP Security, concept of security association, Intrusion Detection Techniques

Intrusion detection: Overview, Approaches for IDS/IPS, Signature based IDS, Host based IDS/IPS. (TEXT BOOK 2)

TEXT BOOKS:

REFERENCE BOOKS:
IV Year – I SEMESTER

VLSI Laboratory

The students are required to design the schematic diagrams using CMOS logic and to draw the layout diagrams to perform the following experiments using CMOS 130nm Technology with necessary EDA tools (Mentor Graphics/Tanner).

List of Experiments:

1. Design and implementation of an inverter
2. Design and implementation of universal gates
3. Design and implementation of full adder
4. Design and implementation of full subtractor
5. Design and implementation of RS-latch
6. Design and implementation of D-latch
7. Design and implementation asynchronous counter
8. Design and Implementation of static RAM cell
9. Design and Implementation of differential amplifier
10. Design and Implementation of ring oscillator

Equipment Required:

1. Mentor Graphics/Tanner software-latest version
2. Personal computer with necessary peripherals.
IV Year – I SEMESTER

MICROWAVE ENGINEERING LAB

Minimum Twelve Experiments to be conducted:

Part – A (Any 7 Experiments) :
1. Reflex Klystron Characteristics.
2. Gunn Diode Characteristics.
3. Attenuation Measurement.
4. Directional Coupler Characteristics.
5. VSWR Measurement.
6. Impedance and Frequency Measurement.
7. Waveguide parameters measurement.
8. Scattering parameters of Circulator.

Part – B (Any 5 Experiments) :
10. Characterization of LED.
12. Intensity modulation of Laser output through an optical fiber.
14. Measurement of NA.
15. Measurement of losses for Analog Optical link.

Equipment required for Laboratories:
1. Regulated Klystron Power Supply
2. VSWR Meter -
3. Micro Ammeter - 0 – 500 μA
4. Multi meter
5. CRO
6. GUNN Power Supply, Pin Modulator
7. Reflex Klystron
8. Crystal Diodes
9. Micro wave components (Attenuation)
10. Frequency Meter
11. Slotted line carriage
12. Probe detector
13. Wave guide shorts
14. Pyramidal Horn Antennas
15. Directional Coupler
16. E, H, Magic Tees
17. Circulators, Isolator
18. Matched Loads
19. Fiber Optic Analog Trainer based LED
20. Fiber Optic Analog Trainer based laser
21. Fiber Optic Digital Trainer
22. Fiber cables - (Plastic, Glass)
UNIT I

ELEMENTS OF CELLULAR RADIO SYSTEM DESIGN: General description of the problem, concept of frequency channels, Co-channel Interference Reduction Factor, desired C/I from a normal case in a Omni directional Antenna system, Cell splitting, consideration of the components of Cellular system.

UNIT II
INTERFERENCE: Introduction to Co-Channel Interference, real time Co-Channel interference, Co-Channel measurement, design of Antenna system, Antenna parameters and their effects, diversity receiver, non-cochannel interference-different types. CELL COVERAGE FOR SIGNAL AND TRAFFIC: Signal reflections in flat and hilly terrain, effect of human made structures, phase difference between direct and reflected paths, constant standard deviation, straight line path loss slope, general formula for mobile propagation over water and flat open area, near and long distance propagation antenna height gain, form of a point to point model.

UNIT III
CELL SITE AND MOBILE ANTENNAS: Sum and difference patterns and their synthesis, omni directional antennas, directional antennas for interference reduction, space diversity antennas, umbrella pattern antennas, minimum separation of cell site antennas, high gain antennas.

UNIT IV
FREQUENCY MANAGEMENT AND CHANNEL ASSIGNMENT: Numbering and grouping, setup access and paging channels channel assignments to cell sites and mobile units, channel sharing and borrowing, sectorization, overlaid cells, non fixed channel assignment.
UNIT V
Handoff, dropped calls and cell splitting, types of handoff, handoff invitation, delaying handoff, forced handoff, mobile assigned handoff. Intersystem handoff, cell splitting, micro cells, vehicle locating methods, dropped call rates and their evaluation.

UNIT VI
DIGITAL CELLULAR NETWORKS: GSM architecture, GSM channels, multiplex access scheme, TDMA, CDMA.

TEXTBOOKS:

REFERENCES:
IV Year – II SEMESTER

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

UNIT I

UNIT II

UNIT III
Oscilloscopes CRT features, vertical amplifiers, horizontal deflection system, sweep, trigger pulse, delay line, sync selector circuits, simple CRO, triggered sweep CRO, Dual beam CRO, Dual trace oscilloscope, sampling oscilloscope, storage oscilloscope, digital readout oscilloscope, digital storage oscilloscope, Lissajous method of frequency measurement, standard specifications of CRO, probes for CRO- Active & Passive, attenuator type.

UNIT IV

UNIT V
Transducers- active & passive transducers : Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers, Resistance Thermometers, Thermocouples, Thermistors, Sensistors.
UNIT VI
Measurement of physical parameters force, pressure, velocity, humidity, moisture, speed, proximity and displacement. Data acquisition systems.

TEXTBOOKS:

REFERENCES:

OUTCOMES
The student will be able to
• Select the instrument to be used based on the requirements.
• Understand and analyze different signal generators and analyzers.
• Understand the design of oscilloscopes for different applications.
• Design different transducers for measurement of different parameters.
IV Year – II SEMESTER

ELECTIVE – III

SATELLITE COMMUNICATIONS

UNIT I

UNIT II
ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, Orbit determination, launches and launch vehicles, Orbital effects in communication systems performance.

UNIT III
SATELLITE SUBSYSTEMS: Attitude and orbit control system, telemetry, tracking, Command and monitoring, power systems, communication subsystems, Satellite antenna Equipment reliability and Space qualification.

UNIT IV
SATELLITE LINK DESIGN: Basic transmission theory, system noise temperature and G/T ratio, Design of down links, up link design, Design of satellite links for specified C/N, System design example.

MULTIPLE ACCESS: Frequency division multiple access (FDMA) Intermodulation, Calculation of C/N. Time division Multiple Access (TDMA) Frame structure, Examples. Satellite Switched TDMA Onboard processing, DAMA, Code Division Multiple access (CDMA), Spread spectrum transmission and reception.

UNIT V
EARTH STATION TECHNOLOGY: Introduction, Transmitters, Receivers, Antennas, Tracking systems, Terrestrial interface, Primary power test methods.

LOW EARTH ORBIT AND GEO-STATIONARY SATELLITE SYSTEMS: Orbit consideration, coverage and frequency considerations,
Delay & Throughput considerations, System considerations, Operational NGSO constellation Designs

UNIT VI

TEXT BOOKS:

REFERENCES:
OBJECTIVES
The student will be introduced to
- Understand the Switched capacitors Circuits and Operation and Analysis, PLLS.
- In this course, students can study Data Converter Fundamentals, Nyquist Rate A/D Converters.
- Another main object of this course is to motivate the graduate students to study and to analyze the Oversampling Converters and Continuous-Time Filters.
- The concepts of Continuous-Time Filters, CMOS Transconductors Using Triode and Active Transistors and MOSFET-C Filters.

UNIT-I:
Switched Capacitor Circuits: Introduction to Switched Capacitor circuits- basic building blocks, Operation and Analysis, Non-ideal effects in switched capacitor circuits, Switched capacitor integrators first order filters, Switch sharing, biquad filters.

UNIT-II:
Phased Lock Loop (PLL): Basic PLL topology, Dynamics of simple PLL, Charge pump PLLs-Lock acquisition, Phase/Frequency detector and charge pump, Basic charge pump PLL, Non-ideal effects in PLLs-PFD/CP non-idealities, Jitter in PLLs, Delay locked loops, applications.

UNIT-III:
Data Converter Fundamentals: DC and dynamic specifications, Quantization noise, Nyquist rate D/A converters- Decoder based converters, Binary-Scaled converters, Thermometer-code converters, Hybrid converters

UNIT-IV:
UNIT-V:

Oversampling Converters: Noise shaping modulators, Decimating filters and interpolating filters, Higher order modulators, Delta sigma modulators with multi-bit quantizers, Delta sigma D/A

UNIT-VI:

Continuous-Time Filters: Introduction to Gm-C Filters, Bipolar Transconductors, CMOS transconductors Using Triode and Active Transistors, BiCMOS Transistors, MOSFET-C Filters.

Text Books:

Reference Books:

OUTCOMES

After going through this course the student will be able to

- Understand the concepts of Switched Capacitor circuits.
- Design and analysis of Nyquist Rate A/D Converters.
- Extend the Mixed Signal Design to Different Applications.
- Concepts of Oversampling Converters and Continuous-Time Filters.
EMBEDDED SYSTEMS
(ELECTIVE – III)

OBJECTIVES
After going through this course the student will be able to

• Understand the building blocks of typical embedded system and different memory technology and memory types.
• Learn the characteristics of an embedded system, quality attributes of embedded systems, application specific and domain specific embedded system,
• Learn about communication devices and basics about VLSI and integrated circuit design and learn concept of firmware design approaches, ISR concept. Interrupt sources, interrupt servicing mechanism, multiple interrupts,
• Understand the concepts of c versus embedded c and compiler versus cross-compiler.
• Learn about the integrated development environment, software utility tool. Also learn about quality assurance and testing of the design, testing on host machine, simulators.

Unit-I:
Introduction: Embedded System-Definition, History, Classification, application areas and purpose of embedded systems, The typical embedded system-Core of the embedded system, Memory, Sensors and Actuators, Communication Interface, Embedded firmware, PCB and passive components. Characteristics, Quality attributes of an Embedded systems, Application-specific and Domain-Specific examples of an embedded system.

Unit-II:
Embedded Hardware Design: Analog and digital electronic components, I/O types and examples, Serial communication devices, Parallel device ports, Wireless devices, Timer and counting devices, Watchdog timer, Real time clock.

Unit-III:
Embedded Firmware Design: Embedded Firmware design approaches, Embedded Firmware development languages, ISR concept, Interrupt sources, Interrupt servicing mechanism, Multiple interrupts, DMA, Device driver programming, Concepts of C versus Embedded C and Compiler versus Cross-compiler.
Unit-IV:
Real Time Operating System: Operating system basics, Types of operating systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Threads, Processes and Scheduling, Task Scheduling, Communication, Synchronization, Device Drivers, How to choose an RTOS.

Hardware Software Co-Design: Fundamental Issues in Hardware Software Co-Design, Computational models in embedded design, Hardware software Trade-offs, Integration of Hardware and Firmware, ICE.

Unit-V:
Embedded System Development: The integrated development environment, Types of files generated on cross-compile, Deassembler/Decompiler, Simulators, Emulators and Debugging, Target hardware debugging, Boundary Scan, Embedded Software development process and tools.

Unit-VI:
Embedded System Implementation And Testing: The main software utility tool, CAD and the hardware, Translation tools-Pre-processors, Interpreters, Compilers and Linkers, Debugging tools, Quality assurance and testing of the design, Testing on host machine, Simulators, Laboratory Tools.

Text Books:

References:
2. Embedding system building blocks By Labrosse, CMP publishers.

OUTCOMES
After going through this course the student will be able to
- Know basics of embedded system, classification, memories, different communication interface and what embedded firmware is and its role in embedded system, different system components.
- Distinguish all communication devices in embedded system, other peripheral device.
- Distinguish concepts of C versus embedded C and compiler versus cross-compiler.
- Choose an operating system, and learn how to choose an RTOS.
RF CIRCUIT DESIGN
(ELECTIVE – III)

UNIT -I:
Introduction to RF Electronics:

UNIT -II:

UNIT -III:
Matching and Biasing Networks:

UNIT-IV

UNIT -V:

UNIT -VI:
Oscillators: Oscillator basics, Low phase noise oscillator design, High frequency Oscillator configuration, LC Oscillators, VCOs, Crystal Oscillators, PLL Synthesizer, and Direct Digital Synthesizer. RF Mixers:
Basic characteristics of a mixer - Active mixers- Image Reject and Harmonic mixers, Frequency domain considerations.

TEXT BOOKS:

REFERENCE BOOKS:
1. Radio frequency and Microwave Electronics - Mathew M. Radmangh, 2001, PE Asia Publ.
Course Objectives: The student will learn about the cloud environment, building software systems and components that scale to millions of users in modern internet, cloud concepts capabilities across the various cloud service models including Iaas, Paas, Saas, and developing cloud based software applications on top of cloud platforms.

Course Outcomes:
1. Understanding the key dimensions of the challenge of Cloud Computing.
2. Assessment of the economics, financial, and technological implications for selecting cloud computing for own organization.
3. Assessing the financial, technological, and organizational capacity of employer’s for actively initiating and installing cloud-based applications.
4. Assessment of own organizations’ needs for capacity building and training in cloud computing-related IT areas.

Syllabus:

UNIT I: Systems modeling, Clustering and virtualization:
Scalable Computing over the Internet, Technologies for Network based systems, System models for Distributed and Cloud Computing, Software environments for distributed systems and clouds, Performance, Security And Energy Efficiency.

UNIT II: Virtual Machines and Virtualization of Clusters and Data Centers:
Implementation Levels of Virtualization, Virtualization Structures/ Tools and mechanisms, Virtualization of CPU, Memory and I/O Devices, Virtual Clusters and Resource Management, Virtualization for Data Center Automation.

UNIT III: Cloud Platform Architecture:
UNIT IV: Cloud Programming and Software Environments:

UNIT V: Cloud Resource Management and Scheduling:
Policies and Mechanisms for Resource Management Applications of Control Theory to Task Scheduling on a Cloud, Stability of a Two Level Resource Allocation Architecture, Feedback Control Based on Dynamic Thresholds, Coordination of Specialized Autonomic Performance Managers, Resource Bundling, Scheduling Algorithms for Computing Clouds, Fair Queuing, Start Time Fair Queuing, Borrowed Virtual Time, Cloud Scheduling Subject to Deadlines, Scheduling Map Reduce Applications Subject to Deadlines.

UNIT VI: Storage Systems:
Evolution of storage technology, storage models, file systems and database, distributed file systems, general parallel file systems. Google file system., Apache Hadoop, Big Table, Megastore, Amazon Simple Storage Service (S3).

TEXT BOOKS:

REFERNCE BOOK:
IV Year – II SEMESTER

3+1 0 3

ELECTIVE - IV

WIRELESS SENSORS AND NETWORKS

UNIT I
OVERVIEW OF WIRELESS SENSOR NETWORKS:

ARCHITECTURES:

UNIT II
NETWORKING Technologies:
Physical Layer and Transceiver Design Considerations, Personal area networks (PANs), hidden node and exposed node problem, Topologies of PANs, MANETs, WANETs.

UNIT-III
MAC Protocols for Wireless Sensor Networks:

UNIT-IV
ROUTING PROTOCOLS:
UNIT-V
TRANSPORT LAYER AND SECURITY PROTOCOLS:

UNIT- VI
SECURITY IN WSNs:

SENSOR NETWORK PLATFORMS AND TOOLS:

APPLICATIONS of WSN:
S Ultra wide band radio communication, Wireless fidelity systems. Future directions, Home automation, smart metering Applications.

TEXT BOOKS:

REFERENCES:

SYSTEM ON CHIP
(ELECTIVE - IV)

OBJECTIVES
After going through this course the student will be able to

- Understand the System Architecture and Processor Architecture, approach for a SOC Design.
- Learn the, Basic concepts in Processor Micro Architecture, and Learn Different Types of Processors like VLIW Processors, Superscalar Processors etc.
- Learn about SOC external memory, Scratchpads and Cache memory and Multilevel Caches.
- Learn the SOC Design approach, Design and evaluation, Applications Like Image compression etc...

UNIT-I:

UNIT-II:

UNIT-III:

UNIT-IV:
Interconnect Customization and Configuration: Inter Connect Architectures, Bus: Basic Architectures, SOC Standard Buses, Analytic Bus Models, Using the Bus model, Effects of Bus transactions and contention time. SOC Customization: An overview, Customizing Instruction Processor
UNIT-V:
Interconnect Configuration: Reconfiguration Technologies, Mapping design onto Reconfigurable devices, Instance-Specific design, Customizable Soft Processor, Reconfiguration - overhead analysis and trade-off analysis on reconfigurable Parallelism.

UNIT-VI:
Application Studies / Case Studies: SOC Design approach, AES algorithms, Design and evaluation, Image compression – JPEG compression.

Text Books:

Reference Books:

OUTCOMES
After going through this course the student will be able to
- Know basics of System Architecture and Processor Architecture.
- Know different Types of Processors Like VLIW Processors, Superscalar Processors etc. and Basic concepts in Processor Micro Architecture.
- Distinguish Cache memory and Multilevel Caches, SOC external memory.
- Know the Concept of Inter Connect Architectures, SOC Standard Buses and Reconfiguration Technologies.
LOW POWER VLSI DESIGN
(ELECTIVE - IV)

OBJECTIVES

- The student will be able to understand the Fundamentals of Low Power VLSI Design.
- In this course, students can study low-Power Design Approaches, Power estimation and analysis.
- Another main object of this course is to motivate the graduate students to study and to analyze the Low-Voltage Low-Power Adders, Multipliers.
- The concepts of Low-Voltage Low-Power Memories and Future Trend and Development of DRAM.

UNIT-I:

UNIT-II:
Low-Power Design Approaches:
Switched Capacitance Minimization Approaches: System Level Measures, Circuit Level Measures, Mask level Measures.

UNIT-III:
Power estimation and analysis: SPICE circuit simulators, gate level logic simulation, capacitive power estimation, static state power and gate level capacitance estimation.

UNIT-IV:
Low-Voltage Low-Power Adders: Introduction, Standard Adder Cells, CMOS Adder’s Architectures – Ripple Carry Adders, Carry Look-Ahead Adders, Carry Select Adders, Carry Save Adders, Low-Voltage Low-Power

UNIT-V:
Low-Voltage Low-Power Multipliers Introduction, Overview of Multiplication, Types of Multiplier Architectures, Braun Multiplier, Baugh-Wooley Multiplier, Booth Multiplier, Introduction to Wallace Tree Multiplier.

UNIT-VI:
Low-Voltage Low-Power Memories: Basics of ROM, Low-Power ROM Technology, Future Trend and Development of ROMs, Basics of SRAM, Memory Cell, Precharge and Equalization Circuit, Low-Power SRAM Technologies, Basics of DRAM, Self-Refresh Circuit, Future Trend and Development of DRAM.

Text Books:
1. Low-Voltage, Low-Power VLSI Subsystems – Kiat-Seng Yeo, Kaushik Roy, TMH Professional Engineering.

Reference Books:

OUTCOMES
After going through this course the student will be able to
- Understand the concepts of Low-Power Design Approaches.
- Design and analysis of Low-Voltage Low-Power Circuits.
- Extend the Low Power Design to Different Applications.
- Understand of Low-Voltage Low-Power Memories and Basics of DRAM.
BIO-MEDICAL INSTRUMENTATION
(ELECTIVE - IV)

UNIT-I

UNIT-II

UNIT- III
Patient Care & Monitory and Measurements in Respiratory System: The elements of Intensive Care Monitory, Diagnosis, Calibration and reparability of Patient Monitoring equipment, other instrumentation for monitoring patients, pace makers, defibrillators, the physiology of respiratory system, tests and instrumentation for mechanics of breathing, respiratory theory equipment, analysis of respiration.

UNIT-IV
Bio telemetry and Instrumentation for the clinical laboratory Introduction to bio telemetry, Physiological parameters adaptable to bio telemetry, the components of bio telemetry system, implantable units, applications of telemetry in patient care – The blood, tests on blood cells, chemical test, automation of chemical tests.

UNIT-V
X-ray and radioisotope instrumentation and electrical safety of medical equipment: Generation of Ionizing radiation, instrumentation for diagnostic X-rays, special techniques, instrumentation for the medical use of
radioisotopes, radiation therapy - Physiological effects of electrical current, shock Hazards from electrical equipment, Methods of accident prevention.

UNIT-VI

TEXT BOOK:

Reference:
2. Introduction to Bio-Medical Engineering – Domach, (Pearson)
3. Introduction to Bio-Medical Equipment Technology – Cart, (Pearson)
EMI / EMC

Pre requisites: EMTL and AWP Courses.

Objectives:

• Student shall be able to understand the root causes for Electromagnetic Noise (EMI), its sources.
• Shall be able to understand the effects of EMI and the required precautions to be taken/to be discussed with his peer group.
• Shall be able to understand the different measurement techniques of EMI (for conducted and normal) and their influences in detail.
• Shall be able to understand different compatibility techniques (EMC) to reduce/suppress EMI.
• Shall be able to understand different standards being followed across the world in the fields of EMI/EMC.

UNIT-II: EMI from apparatus, circuits and open area test sites: Electromagnetic emissions, noise from relays and switches, non-linearities in circuits, passive inter modulation, cross talk in transmission lines, transients in power supply lines, electromagnetic interference (EMI). Open area test sites and measurements.

UNIT-III: Radiated and conducted interference measurements: Anechoic chamber, TEM cell, GH TEM Cell, characterization of conduction currents / voltages, conducted EM noise on power lines, conducted EMI from equipment. Immunity to conducted EMI detectors and measurements.

UNIT-IV: ESD, Grounding, shielding, bonding and EMI filters: Principles and types of grounding, shielding and bonding, characterization of filters, power lines filter design. ESD, Electrical fast transients / bursts, electrical surges.

UNIT-V: Cables, connectors, components: Introduction, EMI suppression cables, EMC connectors, EMC gaskets, Isolation transformers, opto-isolators, Transient and Surge Suppression Devices.

Text Books :

References :

Outcomes-
At the end of this Course
- Students shall be able to distinguish effects of EMI and counter measures by EMC-techniques.
- Students shall apply the knowledge gained in selecting proper gadget/device/appliance/system, as per EMC- norms specified by regulating authorities.
- Students shall choose career in the fields of EMI/EMC as an Engineer/Researcher/Entrepreneur in India/abroad.

IV Year – II SEMESTER T P C 0 0 9
Project & Seminar