Syllabus

I Year - I Semester

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGLISH - I</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Introduction:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training the students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competence of the students of Engineering.

As far as the detailed Textbooks are concerned, the focus should be on the skills of listening, speaking, reading and writing. The nondetailed Textbooks are meant for extensive reading for pleasure and profit.

Thus the stress in the syllabus in primarily on the development of communicative skills and fostering of ideas.

Objectives:

1. To improve the language proficiency of the students in English with emphasis on LSRW skills.
2. To enable the students to study and comprehend the prescribed lessons and subjects more effectively relating to their theoretical and practical components.
3. To develop the communication skills of the students in both formal and informal situations.

LISTENING SKILLS:

Objectives:

1. To enable the students to appreciate the role of listening skill and improve their pronunciation.
2. To enable the students to comprehend the speech of people belonging to different backgrounds and regions.
3. To enable the students to listen for general content, to fill up information and for specific information.

SPEAKING SKILLS:

Objectives:

1. To make the students aware of the importance of speaking for their personal and professional communication.
2. To enable the students to express themselves fluently and accurately in social and professional success.
3. To help the students describe objects, situations and people.
4. To make the students participate in group activities like roleplays, discussions and debates.
5. To make the students participate in Just a Minute talks.
READING SKILLS:

Objectives:

1. To enable the students to comprehend a text through silent reading.
2. To enable the students to guess the meanings of words, messages and inferences of texts in given contexts.
3. To enable the students to skim and scan a text.
4. To enable the students to identify the topic sentence.
5. To enable the students to identify discourse features.
6. To enable the students to make intensive and extensive reading.

WRITING SKILLS:

Objectives:

1. To make the students understand that writing is an exact formal skills.
2. To enable the students to write sentences and paragraphs.
3. To make the students identify and use appropriate vocabulary.
4. To enable the students to narrate and describe.
5. To enable the students capable of note-making.
6. To enable the students to write coherently and cohesively.
7. To make the students to write formal and informal letters.
8. To enable the students to describe graphs using expressions of comparision.
9. To enable the students to write technical reports.

Methodology:

1. The class are to be learner-centered where the learners are to read the texts to get a comprehensive idea of those texts on their own with the help of the peer group and the teacher.
2. Integrated skill development methodology has to be adopted with focus on individual language skills as per the tasks/exercise.
3. The tasks/exercises at the end of each unit should be completed by the learners only and the teacher interventionis permitted as per the complexity of the task/exercise.
4. The teacher is expected to use supplementary material wherever necessary and also generate activities/tasks as per the requirement.
5. The teacher is permitted to use lecture method when a completely new concept is introduced in the class.

Assessment Procedure: Theory

1. The formative and summative assessment procedures are to be adopted (mid exams and end semester examination).
2. Neither the formative nor summative assessment procedures should test the memory of the content of the texts given in the textbook. The themes and global comprehension of the units in the present day context with application of the language skills learnt in the unit are to be tested.
3. Only new unseen passages are to be given to test reading skills of the learners. Written skills are to be tested from sentence level to essay level. The communication formats—emails, letters and reports—are to be tested along with appropriate language and expressions.
4. Examinations:
 I mid exam + II mid exam (15% for descriptive tests+10% for online tests)= 25%
 (80% for the best of two and 20% for the other)
Assignments= 5%
End semester exams=70%

5. Three take home assignments are to be given to the learners where they will have to read texts from the reference books list or other sources and write their gist in their own words.

The following text books are recommended for study in I B.Tech I Semester (Common for all branches) and I B.Pharma I Sem of JNTU Kakinada from the academic year 2016-17 (R-16 Regulations)

DETAILED TEXTBOOK:

ENGLISH FOR ENGINEERS AND TECHNOLOGISTS, Published by Orient Blackswan Pvt Ltd

NON-DETAILED TEXTBOOK:

PANORAMA: A COURSE ON READING, Published by Oxford University Press India

The course content along with the study material is divided into six units.

UNIT I:

1. 'Human Resources' from English for Engineers and Technologists.

OBJECTIVE:

To develop human resources to serve the society in different ways.

OUTCOME:

The lesson motivates the readers to develop their knowledge different fields and serve the society accordingly.

2. 'An Ideal Family' from Panorama: A Course on Reading

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 2:

1. 'Transport: Problems and Solutions' from English for Engineers and Technologists.

OBJECTIVE:

To highlight road safety measures whatever be the mode of transport.
OUTCOME:
The lesson motivates the public to adopt road safety measures.

2. 'War' from 'Panorama : A Course on Reading'

OBJECTIVE:
To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:
Acquisition of writing skills

UNIT 3:
1. 'Evaluating Technology' from English for Engineers and Technologists.

OBJECTIVE:
To highlight the advantages and disadvantages of technology.

OUTCOME:
The lesson creates an awareness in the readers that mass production is ultimately detrimental to biological survival.

2. 'The Verger' from 'Panorama : A Course on Reading'

OBJECTIVE:
To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:
Acquisition of writing skills

UNIT 4:
1. 'Alternative Sources of Energy' from English for Engineers and Technologists.

OBJECTIVE:
To bring into focus different sources of energy as alternatives to the depleting sources.

OUTCOME:
The lesson helps to choose a source of energy suitable for rural India.

2. 'The Scarecrow' from Panorama : A Course on Reading
OBJECTIVE:
To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:
Acquisition of writing skills

UNIT 5:
1. 'Our Living Environment' from English for Engineers and Technologists.

OBJECTIVE:
To highlight the fact that animals must be preserved because animal life is precious.

OUTCOME:
The lesson creates an awareness in the reader as to the usefulness of animals for the human society.

2. 'A Village Host to Nation' from Panorama: A Course on Reading

OBJECTIVE:
To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:
Acquisition of writing skills

UNIT 6:
1. 'Safety and Training' from English for Engineers and Technologists.

OBJECTIVE:
To highlight the possibility of accidents in laboratories, industries and other places and to follow safety measures.

OUTCOME:
The lesson helps in identifying safety measures against different varieties of accidents at home and in the workplace.

2. 'Martin Luther King and Africa' from Panorama: A Course on Reading

OBJECTIVE:
To develop extensive reading skill and comprehension for pleasure and profit.
OUTCOME:

Acquisition of writing skills

NOTE:

All the exercises given in the prescribed lessons in both detailed and non-detailed textbooks relating to the theme and language skills must be covered.

OVERALL COURSE OUTCOME:

1. Using English languages, both written and spoken, competently and correctly.
2. Improving comprehension and fluency of speech.

MODEL QUESTION PAPER FOR THEORY

PART- I

Six short answer questions on 6 unit themes

One question on eliciting student’s response to any of the themes

PART- II

Each question should be from one unit and the last question can be a combination of two or more units.

Each question should have 3 sub questions: A,B & C

A will be from the main text: 5 marks

B from non-detailed text: 3 marks

C on grammar and Vocabulary: 6 marks
Course Objectives:
1. The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.
2. The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.

Course Outcomes: At the end of the Course, Student will be able to:
1. Solve linear differential equations of first, second and higher order.
2. Determine Laplace transform and inverse Laplace transform of various functions and use Laplace transforms to determine general solution to linear ODE.
3. Calculate total derivative, Jacobian and minima of functions of two variables.

UNIT I: Differential equations of first order and first degree:
Linear-Bernoulli-Exact-Reducible to exact.

UNIT II: Linear differential equations of higher order:
Non-homogeneous equations of higher order with constant coefficients with RHS term of the type e^{ax}, sin ax, cos ax, polynomials in x, $e^{ax} V(x)$, $x V(x)$- Method of Variation of parameters.
Applications: LCR circuit, Simple Harmonic motion.

UNIT III: Laplace transforms:
Laplace transforms of standard functions-Shifting theorems - Transforms of derivatives and integrals – Unit step function –Dirac’s delta function- Inverse Laplace transforms– Convolution theorem (with out proof).
Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

UNIT IV: Partial differentiation:
Introduction- Homogeneous function-Euler’s theorem- Total derivative-Chain rule-Generalized Mean value theorem for single variable (without proof)-Taylor’s and Mc Laurent’s series expansion of functions of two variables– Functional dependence- Jacobian.
Applications: Maxima and Minima of functions of two variables without constraints and Lagrange’s method (with constraints).
UNIT V: First order Partial differential equations:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT VI: Higher order Partial differential equations:

Solutions of Linear Partial differential equations with constant coefficients. RHS term of the type $e^{\alpha x+\beta y}, \sin(\alpha x+\beta y), \cos(\alpha x+\beta y), x^m y^n$. Classification of second order partial differential equations.

Text Books:

Reference Books:

3. Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
UNIT I: Solution of Algebraic and Transcendental Equations:

UNIT II: Interpolation:

UNIT III: Numerical Integration and solution of Ordinary Differential equations:

Unit-IV: Special functions-1 (Beta, Gamma and Legendre functions)
Beta-function, Gamma function, Relation between Beta and Gamma functions, Series solution of Legendre’s equation, Legendre’s function, Rodrigue’s formula, Legendre polynomials, Generating function, Recurrence formulae, Orthogonality of Legendre Polynomials, Fourier-Legendre expansion of \(f(x) \).

Unit-V: Functions of a complex variable
Complex function, Real and Imaginary parts of Complex function, Limit, Continuity and Derivative of complex function, Cauchy-Riemann equations, Analytic function, entire function, singular point, conjugate function, \(C – R \) equations in polar form, Harmonic functions, Milne-Thomson method, Simple applications to flow problems, Line integral of a complex function, Cauchy’s theorem(only statement), Cauchy’s Integral Formula.

Unit-VI: Series of Complex terms and Residues
Absolutely convergent and uniformly convergent of series of complex terms, Radius of convergence, Taylor’s series, Maclaurin’s series expansion, Laurent’s series. Zeros of an analytic function, Singularity, Isolated singularity, Removable singularity, Essential singularity, pole of order m, simple pole, Residues, Residue theorem, Calculation of residues, Residue at a pole of order m, Evaluation of real definite integrals: Integration around the unit circle, Integration around semi circle, Indenting the contours having poles on the real axis.

Text Books:

Reference Books:
1. DEAN G. DUFFY, Advanced engineering mathematics with MATLAB, CRC Press
OBJECTIVES: Physics curriculum which is re-oriented to the needs of Circuital branches of graduate engineering courses offered by JNTUniv.Kkd. that serves as a transit to understand the branch specific advanced topics. The courses are designed to:

- Impart Knowledge of Physical Optics phenomena like Interference, Diffraction and Polarization involving required to design instruments with higher resolution.
- Teach Concepts of coherent sources, its realization and utility optical instrumentation.
- Study the concepts regarding the bulk response of materials to the EM fields and their analytically study in the back-drop of basic quantum mechanics.
- Understand the physics of Semiconductors and their working mechanism for their utility in sensors.

UNIT-I
INTERFERENCE: Principle of Superposition – Coherent Sources – Interference in thin films (reflection geometry) – Newton’s rings – construction and basic principle of Interferometers.

UNIT-II
DIFFRACTION: Fraunhofer diffraction at single slit - Cases of double slit, N-slits & Circular Aperture (Qualitative treatment only)-Grating equation - Resolving power of a grating, Telescope and Microscopes.

UNIT-III
POLARIZATION: Types of Polarization – Methods of production - Nicol Prism -Quarter wave plate and Half Wave plate – Working principle of Polarimeter (Sacharimeter).

UNIT-IV
ELECTROMAGNETIC FIELDS: Scalar and Vector Fields – Electric Potential- Gradient, Divergence of fields – Gauss and Stokes theorems-Propagation of EM waves through dielectric medium.

UNIT-V

UNIT-VI

I Year - I Semester

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>POL</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

APPLIED PHYSICS
Outcome: Construction and working details of instruments, ie., Interferometer, Diffractometer and Polarimeter are learnt. Study EM-fields and semiconductors under the concepts of Quantum mechanics paves way for their optimal utility.

Text Books

Reference Books
Learning objectives:
Formulating algorithmic solutions to problems and implementing algorithms in C.
- Notion of Operation of a CPU, Notion of an algorithm and computational procedure, editing and executing programs in Linux.
- Understanding branching, iteration and data representation using arrays.
- Modular programming and recursive solution formulation.
- Understanding pointers and dynamic memory allocation.
- Understanding miscellaneous aspects of C.
- Comprehension of file operations.

UNIT-I:

UNIT-II:
Introduction to C Programming- Identifiers, The main () Function, The printf () Function
Programming Style - Indentation, Comments, Data Types, Arithmetic Operations, Expression Types, Variables and Declarations, Negation, Operator Precedence and Associativity, Declaration Statements, Initialization.
Assignment - Implicit Type Conversions, Explicit Type Conversions (Casts), Assignment Variations, Mathematical Library Functions, Interactive Input, Formatted Output, Format Modifiers.

UNIT-III:
Control Flow-Relational Expressions - Logical Operators:
Selection: if-else Statement, nested if, examples, Multi-way selection: switch, else-if, examples.

UNIT-IV:
Case Study: Swapping Values, Recursion - Mathematical Recursion, Recursion versus Iteration.
UNIT-V:
Arrays & Strings
Arrays: One-Dimensional Arrays, Input and Output of Array Values, Array Initialization, Arrays as Function Arguments, Two-Dimensional Arrays, Larger Dimensional Arrays- Matrices
Strings: String Fundamentals, String Input and Output, String Processing, Library Functions

UNIT-VI:
Pointers, Structures, Files
Pointers: Concept of a Pointer, Initialization of pointer variables, pointers as function arguments, passing by address, Dangling memory, address arithmetic, character pointers and functions, pointers to pointers, Dynamic memory management functions, command line arguments.
Structures: Derived types, Structures declaration, Initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit-fields.
Data Files: Declaring, Opening, and Closing File Streams, Reading from and Writing to Text Files, Random File Access

Outcomes:
- Understand the basic terminology used in computer programming
- Write, compile and debug programs in C language.
- Use different data types in a computer program.
- Design programs involving decision structures, loops and functions.
- Explain the difference between call by value and call by reference
- Understand the dynamics of memory by the use of pointers
- Use different data structures and create/update basic data files.

Text Books:
3. The C programming Language, Dennis Richie and Brian Kernighan, Pearson Education.

Reference Books:
3. Programming in C, Reema Thareja, OXFORD.
Objective: Engineering drawing being the principle method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general methods, cycloids, involutes, tangents & normals for the curves.

Unit II

Objective: To introduce the students to use scales and orthographic projections, projections of points & simple lines.

Scales: Plain scales, diagonal scales and vernier scales

Orthographic Projections: Horizontal plane, vertical plane, profile plane, importance of reference lines, projections of points in various quadrants, projections of lines, lines parallel either to of the reference planes (HP, VP or PP)

Unit III

Objective: The objective is to make the students draw the projections of the lines inclined to both the planes.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces- HT, VT

Unit IV

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one plane and inclined to the other reference plane; inclined to both the reference planes.
Unit V

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to one of the planes.

Unit VI

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Text Books:
1. Engineering Drawing by N.D. Butt, Chariot Publications

Reference Books:
4. Engineering Drawing + AutoCad – K Venugopal, V. Prabhu Raja, New Age
PREScribed LAB Manual FOR SEMESTER I:

'INTERACT: English Lab Manual for Undergraduate Students' Published by Orient Blackswan Pvt Ltd.

OBJECTIVES:
To enable the students to learn through practice the communication skills of listening, speaking, reading and writing.

OUTCOME:
A study of the communicative items in the laboratory will help the students become successful in the competitive world.

The course content along with the study material is divided into six units.

UNIT 1:
1. WHY study Spoken English?
2. Making Inquiries on the phone, thanking and responding to Thanks
 Practice work.

UNIT 2:
1. Responding to Requests and asking for Directions
 Practice work.

UNIT 3:
1. Asking for Clarifications, Inviting, Expressing Sympathy, Congratulating
2. Apologising, Advising, Suggesting, Agreeing and Disagreeing
 Practice work.

UNIT 4:
1. Letters and Sounds
 Practice work.

UNIT 5:
1. The Sounds of English
 Practice work.
UNIT 6:

1. Pronunciation
2. Stress and Intonation
 Practice work.

Assessment Procedure: Laboratory

1. Every lab session (150 minutes) should be handled by not less than two teachers (three would be ideal) where each faculty has to conduct a speaking activity for 20/30 students.
2. The teachers are to assess each learner in the class for not less than 10 speaking activities, each one to be assessed for 10 marks or 10%. The average of 10 day-to-day activity assessments is to be calculated for 10 marks for internal assessment.

The rubric given below has to be filled in for all the students for all activities.

The rubric to assess the learners:

<table>
<thead>
<tr>
<th>Body language</th>
<th>Fluency & Audibility</th>
<th>Clarity in Speech</th>
<th>Neutralization of accent</th>
<th>Appropriate Language</th>
<th>Total 10 marks</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesture & Posture</td>
<td>Eye Contact</td>
<td></td>
<td>Grammar</td>
<td>Vocabulary & expressions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Lab Assessment: Internal (25 marks)**
 1. Day-to-Day activities: 10 marks
 2. Completing the exercises in the lab manual: 5 marks
 3. Internal test (5 marks written and 5 marks oral)

- **Lab Assessment: External (50 marks)**
 1. Written test: 20 marks (writing a dialogue, note-taking and answering questions on listening to an audio recording.
 2. Oral: Reading aloud a text or a dialogue- 10 marks
 3. Viva-Voce by the external examiner: 20 marks
Reference Books:

1. Strengthen your communication skills by Dr M Hari Prasad, Dr Salivendra Raju and Dr G Suvarna Lakshmi, Maruti Publications.
2. English for Professionals by Prof Eliah, B.S Publications, Hyderabad.
3. Unlock, Listening and speaking skills 2, Cambridge University Press
4. Spring Board to Success, Orient BlackSwan
5. A Practical Course in effective english speaking skills, PHI
6. Word power made handy, Dr shalini verma, Schand Company
7. Let us hear them speak, Jayashree Mohanraj, Sage texts
8. Professional Communication, Aruna Koneru, Mc Grawhill Education
9. Cornerstone, Developing soft skills, Pearson Education
Objective: Training field oriented Engineering graduates to handle instruments and their design methods to improve the accuracy of measurements.

LIST OF EXPERIMENTS:
3. Determination of thickness of a spacer using wedge film and parallel interference fringes.
4. Determination of Rigidity modulus of a material- Torsional Pendulum.
7. Verification of laws of vibrations in stretched strings – Sonometer.
9. L- C- R Series Resonance Circuit.
10. Study of I/V Characteristics of Semiconductor diode.
11. I/V characteristics of Zener diode.
13. Magnetic field along the axis of a current carrying coil – Stewart and Gee’s apparatus.
15. Hall Effect in semiconductors.
18. Determination of Young’s modulus by method of single cantilever oscillations.
20. Determination of Planck’s constant using photocell.

Outcome: Physics lab curriculum gives fundamental understanding of design of an instrument with targeted accuracy for physical measurements.
Objective: Training Engineering students to prepare a technical document and improving their writing skills.

LIST OF EXPERIMENTS
1. Hall Effect
2. Crystal Structure
3. Hysteresis
4. Brewster’s angle
5. Magnetic Levitation / SQUID
6. Numerical Aperture of Optical fiber
7. Photoelectric Effect
8. Simple Harmonic Motion
9. Damped Harmonic Motion
10. LASER – Beam Divergence and Spot size
11. B-H curve
12. Michelson’s interferometer
13. Black body radiation

URL: www.vlab.co.in

Outcome: Physics Virtual laboratory curriculum in the form of assignment ensures an engineering graduate to prepare a technical/mini-project/experimental report with scientific temper.
ENGINEERING WORKSHOP:

Course Objective: To impart hands-on practice on basic engineering trades and skills.

Note: At least two exercises to be done from each trade.

Trade:

- **Carpentry**
 1. T-Lap Joint
 2. Cross Lap Joint
 3. Dovetail Joint
 4. Mortise and Tenon Joint

- **Fitting**
 1. Vee Fit
 2. Square Fit
 3. Half Round Fit
 4. Dovetail Fit

- **Black Smithy**
 1. Round rod to Square
 2. S-Hook
 3. Round Rod to Flat Ring
 4. Round Rod to Square headed bolt

- **House Wiring**
 1. Parallel / Series Connection of three bulbs
 2. Stair Case wiring
 3. Florescent Lamp Fitting
 4. Measurement of Earth Resistance

- **Tin Smithy**
 1. Taper Tray
 2. Square Box without lid
 3. Open Scoop
 4. Funnel

IT WORKSHOP:

OBJECTIVES:

- Understand the basic components and peripherals of a computer.
- To become familiar in configuring a system.
- Learn the usage of productivity tools.
- Acquire knowledge about the netiquette and cyber hygiene.
- Get hands on experience in trouble shooting a system?

1. **System Assembling, Disassembling and identification of Parts / Peripherals**

2. **Operating System Installation**- Install Operating Systems like Windows, Linux along with necessary Device Drivers.
3. MS-Office / Open Office
 b. Spread Sheet - organize data, usage of formula, graphs, charts.
 c. Power point - features of power point, guidelines for preparing an effective presentation.
 d. Access- creation of database, validate data.

5. Internet and World Wide Web- Search Engines, Types of search engines, netiquette, cyber hygiene.

6. Trouble Shooting-Hardware trouble shooting, Software trouble shooting.

7. MATLAB- basic commands, subroutines, graph plotting.

8. LATEX- basic formatting, handling equations and images.

OUTCOMES:

- Common understanding of concepts, patterns of decentralization implementation in Africa
- Identified opportunities for coordinated policy responses, capacity building and implementation of best practices
- Identified instruments for improved decentralization to the local level
- Identified strategies for overcoming constraints to effective decentralization and sustainable management at different levels

Text Books:
5. Scott Mueller’s Upgrading and Repairing PCs, 18/e, Scott. Mueller, QUE, Pearson, 2008
7. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech.
8. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.
Introduction:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training the students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competence of the students of Engineering.

As far as the detailed Textbooks are concerned, the focus should be on the skills of listening, speaking, reading and writing. The nondetailed Textbooks are meant for extensive reading for pleasure and profit.

Thus the stress in the syllabus in primarily on the development of communicative skills and fostering of ideas.

Objectives:

1. To improve the language proficiency of the students in English with emphasis on LSRW skills.
2. To enable the students to study and comprehend the prescribed lessons and subjects more effectively relating to their theoretical and practical components.
3. To develop the communication skills of the students in both formal and informal situations.

LISTENING SKILLS:

Objectives:

1. To enable the students to appreciate the role of listening skill and improve their pronunciation.
2. To enable the students to comprehend the speech of people belonging to different backgrounds and regions.
3. To enable the students to listen for general content, to fill up information and for specific information.

SPEAKING SKILLS:

Objectives:

1. To make the students aware of the importance of speaking for their personal and professional communication.
2. To enable the students to express themselves fluently and accurately in social and professional success.
3. To help the students describe objects, situations and people.
4. To make the students participate in group activities like roleplays, discussions and debates.
5. To make the students participate in Just a Minute talks.
READING SKILLS:

Objectives:

1. To enable the students to comprehend a text through silent reading.
2. To enable the students to guess the meanings of words, messages and inferences of texts in given contexts.
3. To enable the students to skim and scan a text.
4. To enable the students to identify the topic sentence.
5. To enable the students to identify discourse features.
6. To enable the students to make intensive and extensive reading.

WRITING SKILLS:

Objectives:

1. To make the students understand that writing is an exact formal skills.
2. To enable the students to write sentences and paragraphs.
3. To make the students identify and use appropriate vocabulary.
4. To enable the students to narrate and describe.
5. To enable the students capable of note-making.
6. To enable the students to write coherently and cohesively.
7. To make the students to write formal and informal letters.
8. To enable the students to describe graphs using expressions of comparison.
9. To enable the students to write technical reports.

Methodology:

1. The class are to be learner-centered where the learners are to read the texts to get a comprehensive idea of those texts on their own with the help of the peer group and the teacher.
2. Integrated skill development methodology has to be adopted with focus on individual language skills as per the tasks/exercise.
3. The tasks/exercises at the end of each unit should be completed by the learners only and the teacher interventionis permitted as per the complexity of the task/exercise.
4. The teacher is expected to use supplementary material wherever necessary and also generate activities/tasks as per the requirement.
5. The teacher is permitted to use lecture method when a completely new concept is introduced in the class.

Assessment Procedure: Theory

1. The formative and summative assessment procedures are to be adopted (mid exams and end semester examination).
2. Neither the formative nor summative assessment procedures should test the memory of the content of the texts given in the textbook. The themes and global comprehension of the units in the present day context with application of the language skills learnt in the unit are to be tested.
3. Only new unseen passages are to be given to test reading skills of the learners. Written skills are to be tested from sentence level to essay level. The communication formats—emails, letters and reports-- are to be tested along with appropriate language and expressions.
4. Examinations:
 I mid exam + II mid exam (15% for descriptive tests+10% for online tests)= 25%
Assignments = 5%
End semester exams = 70%

5. Three take home assignments are to be given to the learners where they will have to read texts from the reference books list or other sources and write their gist in their own words.

The following text books are recommended for study in I B.Tech II Semester (Common for all branches) and I B.Pharma II Sem of JNTU Kakinada from the academic year 2016-17 (R-16 Regulations)

DETAILED TEXTBOOK: ENGLISH ENCOUNTERS Published by Maruthi Publishers.
DETAILED NON-DETAIL: THE GREAT INDIAN SCIENTISTS Published by Cengage learning

The course content along with the study material is divided into six units.

UNIT 1:
1. 'The Greatest Resource- Education' from English Encounters

OBJECTIVE:
Schumacher describes the education system by saying that it was mere training, something more than mere knowledge of facts.

OUTCOME:
The lesson underscores that the ultimate aim of Education is to enhance wisdom.

2. 'A P J Abdul Kalam' from The Great Indian Scientists.

OBJECTIVE:
The lesson highlights Abdul Kalam's contributions to Indian science and the awards he received.

OUTCOME:
Abdul Kalam's simple life and service to the nation inspires the readers to follow in his footsteps.

UNIT 2:
1. 'A Dilemma' from English Encounters

OBJECTIVE: The lesson centres on the pros and cons of the development of science and technology.

OUTCOME: The lesson enables the students to promote peaceful co-existence and universal harmony among people and society.

2. 'C V Raman' from The Great Indian Scientists.
OBJECTIVE:
The lesson highlights the dedicated research work of C V Raman and his achievements in Physics.

OUTCOME:
The Achievements of C V Raman are inspiring and exemplary to the readers and all scientists.

UNIT 3:
1. 'Cultural Shock': Adjustments to new Cultural Environments from English Encounters.

OBJECTIVE:
The lesson depicts the symptoms of Cultural Shock and the aftermath consequences.

OUTCOME:
The lesson imparts the students to manage different cultural shocks due to globalization.
2. 'Homi Jehangir Bhabha' from The Great Indian Scientists.

OBJECTIVE:
The lesson highlights Homi Jehangir Bhabha's contributions to Indian nuclear programme as architect.

OUTCOME:
The seminal contributions of Homi Jehangir Bhabha to Indian nuclear programme provide an aspiration to the readers to serve the nation and strengthen it.

UNIT 4:
1. 'The Lottery' from English Encounters.

OBJECTIVE:
The lesson highlights insightful commentary on cultural traditions.

OUTCOME:
The theme projects society’s need to re examine its traditions when they are outdated.
2. 'Jagadish Chandra Bose' from The Great Indian Scientists.

OBJECTIVE:
The lesson gives an account of the unique discoveries and inventions of Jagadish Chandra Bose in Science.

OUTCOME: The Scientific discoveries and inventions of Jagadish Chandra Bose provide inspiration to the readers to make their own contributions to science and technology, and strengthen the nation.
UNIT 5:
1. 'The Health Threats of Climate Change' from English Encounters.

OBJECTIVE:
The essay presents several health disorders that spring out due to environmental changes.

OUTCOME:
The lesson offers several inputs to protect environment for the sustainability of the future generations.

2. 'Prafulla Chandra Ray' from The Great Indian Scientists.

OBJECTIVE:
The lesson given an account of the experiments and discoveries in Pharmaceuticals of Prafulla Chandra Ray.

OUTCOME:
Prafulla Chandra Ray's scientific achievements and patriotic fervour provide inspiration to the reader.

UNIT 6:
1. 'The Chief Software Architect' from English Encounters

OBJECTIVE:
The lesson supports the developments of technology for the betterment of human life.

OUTCOME:
Pupil get inspired by eminent personalities who toiled for the present day advancement of software development.

2. 'Srinivasa Ramanujan' from The Great Indian Scientists.

OBJECTIVE:
The lesson highlights the extraordinary achievements of Srinivasa Ramanujan, a great mathematician and the most romantic figure in mathematics.

OUTCOME:
The lesson provides inspiration to the readers to think and tap their innate talents.

NOTE:
All the exercises given in the prescribed lessons in both detailed and non-detailed textbooks relating to the theme and language skills must be covered.
MODEL QUESTION PAPER FOR THEORY

PART- I
Six short answer questions on 6 unit themes
One question on eliciting student's response to any of the themes

PART-II
Each question should be from one unit and the last question can be a combination of two or more units.
Each question should have 3 sub questions: A, B & C
A will be from the main text: 5 marks
B from non-detailed text: 3 marks
C on grammar and Vocabulary: 6 marks
Course Objectives:

1. The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.
2. The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.
3. Understand the most basic numerical methods to solve simultaneous linear equations.

Course Outcomes: At the end of the Course, Student will be able to:

1. Determine rank, Eigenvalues and Eigen vectors of a given matrix and solve simultaneous linear equations.
2. Solve simultaneous linear equations numerically using various matrix methods.
3. Determine double integral over a region and triple integral over a volume.
4. Calculate gradient of a scalar function, divergence and curl of a vector function. Determine line, surface and volume integrals. Apply Green, Stokes and Gauss divergence theorems to calculate line, surface and volume integrals.

UNIT I: Linear systems of equations:

UNIT II: Eigen values - Eigen vectors and Quadratic forms:

UNIT III: Multiple integrals:

UNIT IV: Special functions:

UNIT V: Vector Differentiation:
UNIT VI: Vector Integration:

Text Books:

Reference Books:
Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

Learning Objectives:
- Plastics are nowadays used in household appliances; also they are used as composites (FRP) in aerospace industries (Unit I).
- Fuels as a source of energy are a basic need of any industry, particularly industries like thermal power stations, steel industry, fertilizer industry etc., and hence they are introduced (Unit II).
- The basics for the construction of galvanic cells as well as some of the sensors used in instruments are introduced. Also if corrosion is to be controlled, one has to understand the mechanism of corrosion which itself is explained by electrochemical theory (Unit III).
- With the increase in demand, a wide variety of materials are coming up; some of them have excellent engineering properties and a few of these materials are introduced (Unit IV).
- Understanding of crystal structures will help to understand the conductivity, semiconductors and superconductors. Magnetic properties are also studied (Unit V).
- With the increase in demand for power and also with depleting sources of fossil fuels, the demand for alternative sources of fuels is increasing. Some of the prospective fuel sources are introduced (Unit VI).

UNIT I: HIGH POLYMERS AND PLASTICS
Polymerisation: Introduction- Mechanism of polymerization - Stereo regular polymers – methods of polymerization (emulsion and suspension) - Physical and mechanical properties – Plastics as engineering materials: advantages and limitations – Thermoplastics and Thermosetting plastics – Compounding and fabrication (4/5 techniques)- Preparation, properties and applications of polyethene, PVC, Bakelite Teflon and polycarbonates.
Elastomers – Natural rubber- compounding and vulcanization – Synthetic rubbers: Buna S, Buna N, Thiokol and polyurethanes – Applications of elastomers.

UNIT II: FUEL TECHNOLOGY

Explosives:- Introduction, classification, examples: RDX, TNT and ammonium nitrite - rocket fuels.

UNIT III: ELECTROCHEMICAL CELLS AND CORROSION
Galvanic cells - Reversible and irreversible cells – Single electrode potential – Electro chemical series and uses of this series- Standard electrodes (Hydrogen and Calomel electrodes) - Concentration Cells – Batteries: Dry Cell - Ni-Cd cells - Ni-Metal hydride cells - Li cells - Zinc – air cells.

Corrosion:- Definition – Theories of Corrosion (electrochemical) – Formation of galvanic cells by different metals, by concentration cells, by differential aeration and waterline corrosion – Passivity of metals – Pitting corrosion - Galvanic series – Factors which influence the rate of corrosion - Protection
from corrosion – Design and material selection – Cathodic protection - Protective coatings: – Surface preparation – Metallic (cathodic and anodic) coatings - Methods of application on metals (Galvanizing, Tinning, Electroplating, Electroless plating)

UNIT IV: CHEMISTRY OF ADVANCED MATERIALS

Liquid crystals:- Introduction – Types – Applications

Superconductors :- Type-I & Type-2, properties & applications

Green synthesis:- Principles - 3or 4 methods of synthesis with examples – R₄M₄ principles

UNIT V: SOLID STATE CHEMISTRY

Types of solids - close packing of atoms and ions - BCC , FCC, structures of rock salt - cesium chloride-spinel - normal and inverse spinels,

Insulators (electrical and electronic applications)

Magnetic materials:- Ferro and ferri magnetism. Hall effect and its applications.

UNIT VI: NON CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES

Solar Energy: - Introduction, application of solar energy, conversion of solar energy (Thermal conversion & photo conversion) – photovoltaic cell: design, working and its importance

Non-conventional energy sources:

(i) Hydropower include setup a hydropower plant (schematic diagram)
(ii) Geothermal energy: Introduction-schematic diagram of a geothermal power plant
(iii) Tidal and wave power: Introduction- Design and working-movement of tides and their effect on sea level.
(iv) Ocean thermal energy: Introduction, closed-cycle, ocean thermal energy conversion (OTEC), open cycle OTEC, hybrid OTEC, schematic diagram and explanation.
(v) Biomass and biofuels

Outcomes: The advantages and limitations of plastic materials and their use in design would be understood. Fuels which are used commonly and their economics, advantages and limitations are discussed. Reasons for corrosion and some methods of corrosion control would be understood. The students would be now aware of materials like nano-materials and fullerenes and their uses. Similarly liquid crystals and superconductors are understood. The importance of green synthesis is well understood and how they are different from conventional methods is also explained. Conductance phenomenon is better understood. The students are exposed to some of the alternative fuels and their advantages and limitations.
Standard Books:
1. Engineering Chemistry by Jain and Jain; Dhanpat Rai Publishing Co.

Reference Books:
5. Text book of Nano-science and nanotechnology by B.S. Murthy, P. Shankar and others, University Press, IIM
ELECTRICAL TECHNOLOGY:

Preamble:
This course covers the topics related to analysis of various electrical circuits, operation of various electrical machines, various electronic components to perform well in their respective fields.

Learning Objectives:
- To learn the basic principles of electrical law’s and analysis of networks.
- To understand the principle of operation and construction details of DC machines.
- To understand the principle of operation and construction details of transformer.
- To understand the principle of operation and construction details of alternator and 3-Phase induction motor.
- To understand the principles and construction of various measuring instruments.

Unit - I
DC Machines:
Principle of operation of DC generator – emf equation – types of DC machine – torque equation of DC motor – applications – three point starter, speed control methods – OCC of DC generator

Transformers: Principle of operation of single phase transformers – e.m.f equation – losses –efficiency and regulation.

Unit - II
AC Rotating Machines:

Unit III
Measuring Instruments:
Classification – Deflection, controlling, damping torque, ammeter, voltmeter, wattmeter, MI, MC instruments – Energy meter – Construction of CRO.

Learning Outcomes:
- Able to analyse the various electrical networks.
- Able to understand the operation of DC generator, DC Motor ,3-point starter and Speed control methods.
- Able to analyse the performance of transformer.
- Able to explain the operation of 3-phase alternator and 3-phase induction motors.
- Able to explain the working principle of various measuring instruments.
MECHANICAL TECHNOLOGY

Learning Objectives: The content of this course shall provide the student the basic concepts of various mechanical systems and exposes the student to a wide range of equipment and their utility in a practical situation. It shall provide the fundamental principles of fuels, I.C. Engines, transmission systems, heat transfer fundamentals and various manufacturing operations usually exist in any process plant.

UNIT-IV:
Energy Sources: Renewable and non-renewable energy resources, renewable energy forms and conversions. Thermodynamic principles and laws.

UNIT-V:

UNIT-VI:
Transmission of power and manufacturing methods:
Belt, rope and chain drives- Different types - power transmission by belts and ropes, initial tensions in the belt.
Gears: classification of gears, applications.
Metal joining: arc welding, resistance welding, gas welding, brazing and soldering
Metal forming: forging – operations, rolling and extrusion principles
Machine tool: lathe classification, specifications, and operations.

Outcomes:
After completing the course, the student shall be able to understand:
- Working of I.C. Engines
- Modes of Heat transfer
- Power transmission by drives and different manufacturing methods.

Text Books:
2. Electrical Circuit Theory and Technology by John Bird, Routledge Taylor & Francis Group
3. Mechanical Engineering Science K R Gopala Krishna, Subhas publications

Reference Books:
1. Basic Electrical Engineering by M.S. Naidu and S. Kamakshiah, TMH Publications
4. Electrical Engineering – Prasad, Sivanagaraju, Cengage Learning
5. Theory of machines by Rattan McGraw-Hill publications
6. Production Technology by P.N. Rao by I & II McGraw-Hill publications
Course Learning Objectives:
The objectives of the course is to impart

- Overall understanding of the natural resources
- Basic understanding of the ecosystem and its diversity
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities
- An understanding of the environmental impact of developmental activities
- Awareness on the social issues, environmental legislation and global treaties

Course Outcomes:
The student should have knowledge on

- The natural resources and their importance for the sustenance of the life and recognize the need to conserve the natural resources
- The concepts of the ecosystem and its function in the environment. The need for protecting the producers and consumers in various ecosystems and their role in the food web
- The biodiversity of India and the threats to biodiversity, and conservation practices to protect the biodiversity
- Various attributes of the pollution and their impacts and measures to reduce or control the pollution along with waste management practices
- Social issues both rural and urban environment and the possible means to combat the challenges
- The environmental legislations of India and the first global initiatives towards sustainable development.
- About environmental assessment and the stages involved in EIA and the environmental audit.

Syllabus:

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids. - Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT – II Natural Resources: Natural resources and associated problems

Forest resources – Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people

Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, Sustainable mining of Granite, Limestone, Coal, Sea and River sands.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources Vs Oil and Natural Gas Extraction.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT – IV Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

The student should Visit an Industry/Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:
1. Environmental Studies, K.V. S. G. Murali Krishna, VGS Publishers, Vijayawada

Reference:
2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
OBJECTIVES:

- To be familiar with basic techniques handling problems with Data structures
- Solve problems using data structures such as linear lists, stacks, queues, hash tables

UNIT-I: ARRAYS

UNIT-II: STACKS AND QUEUES
The Stack Abstract Data Type, The Queue Abstract Data Type, Evaluation of Expressions, Expression-Postfix Notation- Infix to Postfix.

UNIT-III: LINKED LISTS

UNIT-IV: TREES
Representation of Trees, Binary Trees, The Abstract Data Type, Properties of Binary Tress, Binary Tree Representations, Binary Tree Traversal, Introduction, Inorder Traversal Preorder Traversal, Postorder Traversal, Thread Binary Trees, Threads, Inorder Traversal of a Threaded Binary Tree, Inserting a Node into a Threaded Binary Tree, Heaps, Priority Queues, Definition of a Max Heap, Insertion into a Max Heap, Deletion from a Max Heap, Binary Search Trees, Definition, Searching a Binary Search Tree, Insertion into a Binary Search Tree, Deletion from a Binary Search Tree, Height of Binary Search Tree.

UNIT-V: GRAPHS
The Graph Abstract Data Type, Introduction, Definition, Graph Representation, Elementary Graph Operation, Depth First Search, Breadth First Search, Connected Components, Spanning Trees, Biconnected Components, Minimum Cost Spanning Trees, Kruskal S Algorithm, Prim s Algorithm, Sollin’s Algorithm, Shortest Paths and Transitive Closure, Single Source/All Destination: Nonnegative Edge Cost, Single Source/All Destination: General Weights, All-Pairs Shortest Path, Transitive Closure.
UNIT-VI: SORTING
Insertion Sort, Quick Sort, Merge Sort Merging, Iterative Merge Sort, Recursive Merge Sort, Heap Sort, Summary of Internal Sorting

OUTCOMES:

- Apply advanced data structure strategies for exploring complex data structures.
- Compare and contrast various data structures and design techniques in the area Of Performance.
- Implement all data structures like stacks, queues, trees, lists and graphs and compare their Performance and trade offs

Text Books:

Reference Books:
2. Data structures using C and C++, Langsam, Augenstein and Tanenbaum, PHI.
1. Introduction to Chemistry laboratory – Molarity, Normality, Primary, secondary standard solutions, Volumetric titrations, Quantitative analysis, Qualitative analysis, etc.

2. Trial experiment - Determination of HCl using standard Na₂CO₃ solution.

3. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.

4. Determination of KMnO₄ using standard Oxalic acid solution.

5. Determination of Ferrous iron using standard K₂Cr₂O₇ solution.

6. Determination of Copper using standard K₂Cr₂O₇ solution.

8. Determination of Copper using standard EDTA solution.

10. Determination of pH of the given sample solution using pH meter.

11. Conductometric titration between strong acid and strong base.

12. Conductometric titration between strong acid and weak base.

13. Potentiometric titration between strong acid and strong base.

14. Potentiometric titration between strong acid and weak base.

15. Determination of Zinc using standard EDTA solution.

16. Determination of Vitamin – C.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.
Reference Books

OBJECTIVES:
To enable the students to learn demonstratively the communication skills of listening, speaking, reading and writing.

OUTCOME:
A study of the communicative items in the laboratory will help the students become successful in the competitive world.

The course content along with the study material is divided into six units.

UNIT 1:
1. Debating - Practice work

UNIT 2:
1. Group Discussions -- Practice work

UNIT 3:
1. Presentation Skills - Practice work

UNIT 4:
1. Interview Skills - Practice work

UNIT 5:
1. Email, Curriculum Vitae - Practice work

UNIT 6:
1. Idiomatic Expressions
2. Common Errors in English - Practice work
Reference Books:

1. Strengthen your communication skills by Dr M Hari Prasad, Dr Salivendra Raju and Dr G Suvarna Lakshmi, Maruti Publications.
2. English for Professionals by Prof Eliah, B.S Publications, Hyderabad.
3. Unlock, Listening and speaking skills 2, Cambridge University Press
4. Spring Board to Success, Orient BlackSwan
5. A Practical Course in effective english speaking skills, PHI
6. Word power made handy, Dr shalini verma, Schand Company
7. Let us hear them speak, Jayashree Mohanraj, Sage texts
8. Professional Communication, Aruna Koneru, Mc Grawhill Education
9. Cornerstone, Developing soft skills, Pearson Education
I Year - II Semester

OBJECTIVES:

• Understand the basic concept of C Programming, and its different modules that includes conditional and looping expressions, Arrays, Strings, Functions, Pointers, Structures and File programming.

• Acquire knowledge about the basic concept of writing a program.

• Role of constants, variables, identifiers, operators, type conversion and other building blocks of C Language.

• Use of conditional expressions and looping statements to solve problems associated with conditions and repetitions.

• Role of Functions involving the idea of modularity.

Programming

Exercise - 1 Basics
a) What is an OS Command, Familiarization of Editors - vi, Emacs
b) Using commands like mkdir, ls, cp, mv, cat, pwd, and man
c) C Program to Perform Adding, Subtraction, Multiplication and Division of two numbers From Command line

Exercise - 2 Basic Math
a) Write a C Program to Simulate 3 Laws at Motion
b) Write a C Program to convert Celsius to Fahrenheit and vice versa

Exercise - 3 Control Flow - I
a) Write a C Program to Find Whether the Given Year is a Leap Year or not.
b) Write a C Program to Add Digits & Multiplication of a number

Exercise – 4 Control Flow - II
a) Write a C Program to Find Whether the Given Number is
 i) Prime Number
 ii) Armstrong Number
b) Write a C program to print Floyd Triangle
c) Write a C Program to print Pascal Triangle
Exercise – 5 Functions
a) Write a C Program demonstrating of parameter passing in Functions and returning values.
b) Write a C Program illustrating Fibonacci, Factorial with Recursion without Recursion

Exercise – 6 Control Flow - III
a) Write a C Program to make a simple Calculator to Add, Subtract, Multiply or Divide Using switch...case
b) Write a C Program to convert decimal to binary and hex (using switch call function the function)

Exercise – 7 Functions - Continued
Write a C Program to compute the values of $\sin x$ and $\cos x$ and e^x values using Series expansion. (use factorial function)

Exercise – 8 Arrays
Demonstration of arrays
a) Search-Linear.
b) Sorting-Bubble, Selection.
c) Operations on Matrix.

Exercises - 9 Structures
a) Write a C Program to Store Information of a Movie Using Structure
b) Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
c) Write a C Program to Add Two Complex Numbers by Passing Structure to a Function

Exercise - 10 Arrays and Pointers
a) Write a C Program to Access Elements of an Array Using Pointer
b) Write a C Program to find the sum of numbers with arrays and pointers.

Exercise – 11 Dynamic Memory Allocations
a) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.
b) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function.
Understand the difference between the above two programs

Exercise – 12 Strings
a) Implementation of string manipulation operations with library function.
 i) copy
 ii) concatenate
 iii) length
 iv) compare
b) Implementation of string manipulation operations without library function.
 i) copy
 ii) concatenate
 iii) length
 iv) compare
Exercise -13 Files
a) Write a C programming code to open a file and to print its contents on screen.
b) Write a C program to copy files

Exercise - 14 Files Continued
a) Write a C program merges two files and stores their contents in another file.
b) Write a C program to delete a file.

OUTCOMES:

• Apply and practice logical ability to solve the problems.

• Understand C programming development environment, compiling, debugging, and linking and executing a program using the development environment

• Analyzing the complexity of problems, Modularize the problems into small modules and then convert them into programs

• Understand and apply the in-built functions and customized functions for solving the problems.

• Understand and apply the pointers, memory allocation techniques and use of files for dealing with variety of problems.

• Document and present the algorithms, flowcharts and programs in form of user-manuals

• Identification of various computer components, Installation of software

Note:
a) All the Programs must be executed in the Linux Environment. (Mandatory)
b) The Lab record must be a print of the LATEX (.tex) Format.