

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

B.Tech.- II Year I Semester

S.No.	Category	Title	L	T	P	Credits
1	BS&H	Discrete Mathematics & Graph Theory	3	0	0	3
2	BS&H	Universal human values – understanding harmony and Ethical human conduct	2	1	0	3
3	Engineering Science	Digital Logic & Computer Organization	3	0	0	3
4	Professional Core	Advanced Data Structures & Algorithm Analysis	3	0	0	3
5	Professional Core	Object Oriented Programming Through Java	3	0	0	3
6	Professional Core	Advanced Data Structures and Algorithm Analysis Lab	0	0	3	1.5
7	Professional Core	Object Oriented Programming Through Java Lab	0	0	3	1.5
8	Skill Enhancement Course	Python programming	0	1	2	2
9	Audit Course	Environmental Science	2	0	0	0
Total			16	2	8	20

PRAKASAM ENGINEERING COLLEGE:: KANDUKUR (AUTONOMOUS)

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

B.Tech.– II Year II Semester

S.No.	Category	Title	L	T	P	Credits
1	Management Course- I	Managerial Economics And Financial Analysis	2	0	0	2
2	Engineering Science/ Basic Science	Number Theory & Applications	3	0	0	3
3	Professional Core	Operating Systems	3	0	0	3
4	Professional Core	Database Management Systems	3	0	0	3
5	Professional Core	Computer Networks	3	0	0	3
6	Professional Core	Computer Networks Lab	0	0	3	1.5
7	Professional Core	Database Management Systems Lab	0	0	3	1.5
9	Skill Enhancement Course	Full Stack Development-1	0	1	2	2
10	BS&H	Design Thinking & Innovation	1	0	2	2
Total			15	1	10	21

II Year I Semester

L	T	P	C
3	0	0	3

DISCRETE MATHEMATICS AND GRAPH THEORY

Course Objectives:

- To introduce the students to the topics and techniques of discrete Methods and combinatorial reasoning.
- To introduce a wide variety of applications. The algorithmic approach to the solution of problems is fundamental in discrete mathematics, and this approach reinforces the close ties between this discipline and the area of computer science.

Course Outcomes: At the end of the course students will be able to

1. Build skills in solving mathematical problems (L3)
2. Comprehend mathematical principles and logic (L4)
3. Demonstrate knowledge of mathematical modeling and proficiency in using mathematical software (L6)
4. Manipulate and analyze data numerically and/or graphically using appropriate Software (L3)
5. How to communicate effectively mathematical ideas/results verbally or in writing (L1)

UNIT-I: Mathematical Logic:

Propositional Calculus: Statements and Notations, Connectives, Well Formed Formulas, Truth Tables, Tautologies, Equivalence of Formulas, Duality Law, Tautological Implications, Normal Forms, Theory of Inference for Statement Calculus, Consistency of Premises, Indirect Method of Proof, Predicate Calculus: Predicates, Predicative Logic, Statement Functions, Variables and Quantifiers, Free and Bound Variables, Inference Theory for Predicate Calculus.

UNIT-II: Set Theory:

Sets: Operations on Sets, Principle of Inclusion-Exclusion, Relations: Properties, Operations, Partition and Covering, Transitive Closure, Equivalence, Compatibility and Partial Ordering, Hasse Diagrams, Functions: Bijective, Composition, Inverse, Permutation, and Recursive Functions, Lattice and its Properties.

UNIT-III: Combinatorics and Recurrence Relations:

Basis of Counting, Permutations, Permutations with Repetitions, Circular and Restricted Permutations, Combinations, Restricted Combinations, Binomial and Multinomial Coefficients and Theorems.

Recurrence Relations:

Generating Functions, Function of Sequences, Partial Fractions, Calculating Coefficient of Generating Functions, Recurrence Relations, Formulation as Recurrence Relations, Solving Recurrence Relations by Substitution and Generating Functions, Method of Characteristic Roots, Solving Inhomogeneous Recurrence Relations

UNIT-IV: Graph Theory:

Basic Concepts, Graph Theory and its Applications, Subgraphs, Graph Representations: Adjacency and Incidence Matrices, Isomorphic Graphs, Paths and Circuits, Eulerian and Hamiltonian Graphs,

Unit-V: Multi Graphs

Multigraphs, Bipartite and Planar Graphs, Euler's Theorem, Graph Colouring and Covering, Chromatic Number, Spanning Trees, Prim's and Kruskal's Algorithms, BFS and DFS Spanning Trees.

TEXT BOOKS:

1. Discrete Mathematical Structures with Applications to Computer Science, J. P. Tremblay and P. Manohar, Tata McGraw Hill.
2. Elements of Discrete Mathematics-A Computer Oriented Approach, C. L.Liu and D. P. Mohapatra, 3rd Edition, Tata McGraw Hill.
3. Theory and Problems of Discrete Mathematics, Schaum's Outline Series, Seymour Lipschutz and Marc Lars Lipson, 3rd Edition, McGraw Hill.

REFERENCE BOOKS:

1. Discrete Mathematics for Computer Scientists and Mathematicians, J. L.Mott, A. Kandel and T. P. Baker, 2nd Edition, Prentice Hall of India.
2. Discrete Mathematical Structures, Bernand Kolman, Robert C. Busby andSharon Cutler Ross, PHI.
3. Discrete Mathematics, S. K. Chakraborty and B.K. Sarkar, Oxford, 2011.
4. Discrete Mathematics and its Applications with Combinatorics and GraphTheory, K. H. Rosen, 7th Edition, Tata McGraw Hill.

II Year I Semester

L	T	P	C
2	1	0	3

**UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY AND
ETHICAL HUMAN CONDUCT**

Course Objectives:

- To help the students appreciate the essential complementary between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behaviour and mutually enriching interaction with Nature.

Course Outcomes:

- Define the terms like Natural Acceptance, Happiness and Prosperity (L1, L2)
- Identify one's self, and one's surroundings (family, society nature) (L1, L2)
- Apply what they have learnt to their own self in different day-to-day settings in real life (L3)
- Relate human values with human relationship and human society. (L4)
- Justify the need for universal human values and harmonious existence (L5)
- Develop as socially and ecologically responsible engineers (L3, L6)

Course Topics

The course has 28 lectures and 14 tutorials in 5 modules. The lectures and tutorials are of 1-hour duration. Tutorial sessions are to be used to explore and practice what has been proposed during the lecture sessions.

The Teacher's Manual provides the outline for lectures as well as practice sessions. The teacher is expected to present the issues to be discussed as propositions and encourage the students to have a dialogue.

UNIT I Introduction to Value Education (6 lectures and 3 tutorials for practice session)

Lecture 1: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education)

Lecture 2: Understanding Value Education

Tutorial 1: Practice Session PS1 Sharing about Oneself

Lecture 3: self-exploration as the Process for Value Education

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Lecture4: Continuous Happiness and Prosperity – the Basic Human Aspirations

Tutorial 2: Practice Session PS2 Exploring Human Consciousness

Lecture 5: Happiness and Prosperity – Current Scenario

Lecture 6: Method to Fulfill the Basic Human Aspirations

Tutorial 3: Practice Session PS3 Exploring Natural Acceptance

UNIT II	Harmony in the Human Being (6 lectures and 3 tutorials for practice session) Lecture 7: Understanding Human being as the Co-existence of the self and the body. Lecture 8: Distinguishing between the Needs of the self and the body Tutorial 4: Practice Session PS4 Exploring the difference of Needs of self and body. Lecture 9: The body as an Instrument of the self Lecture 10: Understanding Harmony in the self Tutorial 5: Practice Session PS5 Exploring Sources of Imagination in the self Lecture 11: Harmony of the self with the body Lecture 12: Programme to ensure self-regulation and Health Tutorial 6: Practice Session PS6 Exploring Harmony of self with the body
----------------	---

UNIT III	Harmony in the Family and Society (6 lectures and 3 tutorials for practice session) Lecture 13: Harmony in the Family – the Basic Unit of Human Interaction Lecture 14: 'Trust' – the Foundational Value in Relationship Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust Lecture 15: 'Respect' – as the Right Evaluation Tutorial 8: Practice Session PS8 Exploring the Feeling of Respect Lecture 16: Other Feelings, Justice in Human-to-Human Relationship Lecture 17: Understanding Harmony in the Society Lecture 18: Vision for the Universal Human Order Tutorial 9: Practice Session PS9 Exploring Systems to fulfil Human Goal
-----------------	--

UNIT IV	Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session) Lecture 19: Understanding Harmony in the Nature Lecture 20: Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature Tutorial 10: Practice Session PS10 Exploring the Four Orders of Nature Lecture 21: Realizing Existence as Co-existence at All Levels Lecture 22: The Holistic Perception of Harmony in Existence Tutorial 11: Practice Session PS11 Exploring Co-existence in Existence.
----------------	--

UNIT V	Implications of the Holistic Understanding – a Look at Professional Ethics (6 lectures and 3 tutorials for practice session)
---------------	--

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Lecture 23: Natural Acceptance of Human Values
Lecture 24: Definitiveness of (Ethical) Human Conduct
Tutorial 12: Practice Session PS12 Exploring Ethical Human Conduct
Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order
Lecture 26: Competence in Professional Ethics
Tutorial 13: Practice Session PS13 Exploring Humanistic Models in Education
Lecture 27: Holistic Technologies, Production Systems and Management Models-Typical Case Studies
Lecture 28: Strategies for Transition towards Value-based Life and Profession
Tutorial 14: Practice Session PS14 Exploring Steps of Transition towards Universal Human Order

Practice Sessions for UNIT I – Introduction to Value Education

PS1 Sharing about Oneself
PS2 Exploring Human Consciousness
PS3 Exploring Natural Acceptance

Practice Sessions for UNIT II – Harmony in the Human Being

PS4 Exploring the difference of Needs of self and body
PS5 Exploring Sources of Imagination in the self
PS6 Exploring Harmony of self with the body

Practice Sessions for UNIT III – Harmony in the Family and Society

PS7 Exploring the Feeling of Trust
PS8 Exploring the Feeling of Respect
PS9 Exploring Systems to fulfil Human Goal

Practice Sessions for UNIT IV – Harmony in the Nature (Existence)

PS10 Exploring the Four Orders of Nature
PS11 Exploring Co-existence in Existence

Practice Sessions for UNIT V – Implications of the Holistic Understanding – a Look at Professional Ethics

PS12 Exploring Ethical Human Conduct
PS13 Exploring Humanistic Models in Education
PS14 Exploring Steps of Transition towards Universal Human Order

READINGS:

Textbook and Teachers Manual

a. The Textbook

R R Gaur, R Asthana, G P Bagaria, *A Foundation Course in Human Values and Professional Ethics*, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1

b. The Teacher's Manual

R R Gaur, R Asthana, G P Bagaria, *Teachers' Manual for A Foundation Course in Human Values and Professional Ethics*, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books

1. *JeevanVidya: EkParichaya*, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
2. *Human Values*, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
3. *The Story of Stuff* (Book).
4. *The Story of My Experiments with Truth* - by Mohandas Karamchand Gandhi
5. *Small is Beautiful* - E. F Schumacher.
6. *Slow is Beautiful* - Cecile Andrews
7. *Economy of Permanence* - J C Kumarappa
8. *Bharat Mein Angreji Raj* – PanditSunderlal
9. *Rediscovering India* - by Dharampal
10. *Hind Swaraj or Indian Home Rule* - by Mohandas K. Gandhi
11. *India Wins Freedom* - Maulana Abdul Kalam Azad
12. *Vivekananda* - Romain Rolland (English)
13. *Gandhi* - Romain Rolland (English)

Mode of Conduct:

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than "extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses. This course is to be taught by faculty from every teaching department, not exclusively by any one department.

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Teacher preparation with a minimum exposure to at least one 8-day Faculty Development Program on Universal Human Values is deemed essential.

Online Resources:

1. <https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%201-Introduction%20to%20Value%20Education.pdf>
2. <https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%202-Harmony%20in%20the%20Human%20Being.pdf>
3. <https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%203-Harmony%20in%20the%20Family.pdf>
4. <https://fdp-si.aicte-india.org/UHV%201%20Teaching%20Material/D3-S2%20Respect%20July%202023.pdf>
5. <https://fdp-si.aicte-india.org/UHV-II%20Class%20Notes%20&%20Handouts/UHV%20Handout%205-Harmony%20in%20the%20Nature%20and%20Existence.pdf>
6. <https://fdp-si.aicte-india.org/download/FDPTeachingMaterial/3-days%20FDP-SI%20UHV%20Teaching%20Material/Day%203%20Handouts/UHV%20D3-S2A%20Und%20Nature-Existence.pdf>
7. <https://fdp-si.aicte-india.org/UHV%20II%20Teaching%20Material/UHV%20II%20Lecture%202023-25%20Ethics%20v1.pdf>
8. <https://www.studocu.com/in/document/kiet-group-of-institutions/universal-human-values/chapter-5-holistic-understanding-of-harmony-on-professional-ethics/62490385>
9. https://onlinecourses.swayam2.ac.in/aic22_ge23/preview

II Year I Semester

L	T	P	C
3	0	0	3

DIGITALLOGIC&COMPUTERORGANIZATION

Course Objectives:

The main objectives of the Course is to Provide students with a comprehensive understanding of digital logic design principles and computer organization fundamentals

Describe memory hierarchy concepts

Explain input/output(I/O) systems and their interaction with the CPU, memory, and peripheral devices

UNIT-I:

Data Representation: Binary Numbers, Fixed Point Representation. Floating Point Representation. Number base conversions, Octal and Hexa decimal Numbers, components, Signed binary numbers, Binary codes Digital Logic Circuits-I:BasicLogic Functions, Logicgates, universal logic gates, Minimization of Logic expressions. K-Map Simplification, Combinational Circuits, Decoders, Multiplexers

UNIT-II:

Digital Logic Circuits-II: Sequential Circuits, Flip-Flops, Binary counters, Registers, Shift Registers, Ripple counters. Basic Structure of Computers: Computer Types, Functional units, Basic operational concepts, Bus structures, Software, Performance, multiprocessors and multicollectors, Computer Generations, Von-Neumann Architecture

UNIT-III:

Computer Arithmetic: Addition and Subtraction of Signed Numbers, Design of Fast Adders, Multiplication of Positive Numbers, Signed-oper and Multiplication, Fast Multiplication, Integer Division, Floating-Point Numbers and Operations. Processor Organization: Fundamental Concepts, Execution of a Complete Instruction, Multiple-Bus Organization, Hardwired Control and Multiprogrammed Control

UNIT-IV:

The Memory Organization: Basic Concepts, Semiconductor RAM Memories, Read-Only Memories, Speed, Size and Cost, Cache Memories, Performance Considerations, Virtual Memories, Memory Management Requirements, Secondary Storage.

UNIT-V:

Input/Output Organization: Accessing I/O Devices, Interrupts, Processor Examples, Direct Memory Access, Buses, Interface Circuits, Standard I/O Interfaces

Textbooks:

Computer Organization, Carl Hamacher, Zvonko Vranesic, Safwat Zaky, 6th edition, McGraw Hill

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

DigitalDesign,6thEdition, M.MorrisMano,PearsonEducation.

OrganizationandArchitecture,WilliamStallings,11thEdition,Pearson.

ReferenceBooks:

Computer Systems Architecture, M.Moris Mano,3rdEdition, Pearson

ComputerOrganizationandDesign,DavidA.Paterson,JohnL.Hennessy,Elsevier
FundamentalsofLogicDesign,Roth,5thEdition, Thomson

Online Learning Resources:

1.<https://nptel.ac.in/courses/106/103/106103068/>

II Year I Semester

L	T	P	C
3	0	0	3

ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS

Course Objectives:

The main objectives of the course is to

- Provide knowledge on advance data structures frequently used in Computer Science domain
- Develop skills in algorithm design techniques popularly used
- Understand the use of various data structures in the algorithm design

UNIT-I:

Introduction to Algorithm Analysis, Space and Time Complexity analysis, Asymptotic Notations. AVL Trees—Creation, Insertion, Deletion operations and Applications. B. Trees—Creation, Insertion, Deletion operations and Applications

UNIT-II:

Heap Trees (Priority Queues)— Min and MaxHeaps, Operations and Applications. Graphs—Terminology, Representations, Basic Search and Traversals, Connected Components and Biconnected Components, applications. Divide and Conquer: The General Method, Quick Sort, Merge Sort, Strassen's matrix multiplication, ConvexHull

UNIT-III:

Greedy Method: General Method, Job Sequencing with deadlines, Knapsack Problem, Minimum cost spanning trees, Single Source Shortest Paths Dynamic Programming: General Method, All pairs shortest paths, Single Source Shortest Paths—General Weights (Bellman Ford Algorithm), Optimal Binary Search Trees, 0/1 Knapsack, String Editing, Travelling Salesperson problem

UNIT-IV:

Backtracking: General Method, 8-Queens Problem, Sum of Subsets problem, Graph Coloring, 0/1 Knapsack Problem. Branch and Bound: The General Method, 0/1 Knapsack Problem, Travelling Salesperson problem

UNIT-V:

NP Hard and NP Complete Problems: Basic Concepts, Cook's theorem. NP Hard Graph Problems: Clique Decision Problem (CDP), Chromatic Number Decision Problem (CNDP), Traveling Salesperson Decision Problem (TSP). NP Hard Scheduling Problems: Scheduling Identical Processors, Job Shop Scheduling

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Textbooks:

1. Fundamentals of Data Structures in C++, Horowitz, Ellis; Sahni Sartaj; Mehta, Dinesh, 2nd Edition Universities Press
2. Compute Algorithms in C++, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, 2nd Edition University Press

Reference Books:

1. Data Structures and program design in C, Robert Kruse, Pearson Education Asia
2. An introduction to Data Structures with applications, Trembley & Sorenson, Mc Graw Hill
3. The Art of Computer Programming, Vol.1: Fundamental Algorithms, Donald E Knuth, Addison-Wesley, 1997.
4. Data Structure using C & C++: Langsam, Augenstein & Tanenbaum, Pearson, 1995
5. Algorithms+ Data Structures & Programs:, N. Wirth, PHI
6. Fundamentals of Data Structures in C++: Horowitz, Sahni & Mehta, Galgotia Pub.
7. Data structures in Java:, Thomas Standish, Pearson Education Asia

Online

Learning

Resources:

https://www.tutorialspoint.com/advanced_data_structures/index.asp <http://www.terindia.net/Algorithms.html>

II Year I Semester

L	T	P	C
3	0	0	3

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Course Objectives:

The learning objectives of this course are to:

- identify Java language components and how they work together in applications
- learn the fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries.
- learn how to extend Java classes with inheritance and dynamic binding and how to use exception handling in Java applications
- understand how to design applications with threads in Java
- understand how to use Java APIs for program development

UNIT I

Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction, Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line Arguments, User Input to Programs, Escape Sequences Comments, Programming Style. **Data Types**, Variables, and Operators :Introduction, Data Types in Java, Declaration of Variables, Data Types, Type Casting, Scop of Variable Identifier, Literal Constants, Symbolic Constants, Formatted Output with printf() Method, Static Variables and Methods, Attribute Final, **Introduction to Operators**, Precedence and Associativity of Operators, Assignment Operator (=), Basic Arithmetic Operators, Increment (++) and Decrement (--) Operators, Ternary Operator, Relational Operators, Boolean Logical Operators, Bitwise Logical Operators. **Control Statements:** Introduction, if Expression, Nested if Expressions, if-else Expressions, Ternary Operator ?:, Switch Statement, Iteration Statements, while Expression, do-while Loop, for Loop, Nested for Loop, For-Each for Loop, Break Statement, Continue Statement.

UNIT II

Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members, Declaration of Class Objects, Assigning One Object to Another, Access Control for Class Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value and by Reference, Keyword this. **Methods:** Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor Methods, Class Objects as Parameters in Methods, Access Control, Recursive Methods, Nesting of Methods, Overriding Methods, Attrib tes Final and Static.

UNIT III

Arrays: Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory, Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array, Dynamic Change of Array Size, Sorting of Arrays, Search for Values in Arrays, Class Arrays, Two-dimensional Arrays, Arrays of Varying Lengths, Three-dimensional Arrays, Arrays as Vectors. **Inheritance:** Introduction, Process of Inheritance, Types of Inheritances, Universal Super Class-Object Class, Inhibiting Inheritance of Class Using Final, Access Control and Inheritance, Multilevel Inheritance, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding, Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance. **Interfaces:** Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces, Nested Interfaces, Inheritance of Interfaces, Default Methods in Interfaces, Static Methods in Interface, Functional Interfaces, Annotations.

UNIT IV

Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into Programs, Path and Class Path, Access Control, Packages in Java SE, Java.lang Package and its Classes, Class Object, Enumeration, class Math, Wrapper Classes, Auto-boxing and Auto-unboxing, Java util Classes and Interfaces, Formatter Class, Random Class, Time Package, Class Instant (java.time.Instant), Formatting for Date/Time in Java, Temporal Adjusters Class, Temporal Adjusters Class. **Exception Handling:** Introduction, Hierarchy of Standard Exception Classes, Keywords throws and throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked Exceptions, Checked Exceptions. **Java I/O and File:** Java I/O API, standard I/O streams, types, Byte streams, Character streams, Scanner class, Files in Java (Text Book 2)

UNIT V

String Handling in Java: Introduction, Interface Char Sequence, Class String, Methods for Extracting Characters from Strings, Comparison, Modifying, Searching; Class String Buffer. **Multithreaded Programming:** Introduction, Need for Multiple Threads Multithreaded Programming for Multi-core Processor, Thread Class, Main Thread- Creation of New Threads, Thread States, Thread Priority-Synchronization, Deadlock and Race Situations, Inter-thread Communication - Suspending, Resuming, and Stopping of Threads. **Java Database Connectivity:** Introduction, JDBC Architecture, Installing MySQL and MySQL Connector/J, JDBC Environment Setup, Establishing JDBC Database Connections, ResultSet Interface. **Java FX GUI:** Java FX Scene Builder, Java FX App Window Structure, displaying text and image, event handling, laying out nodes in scene graph, mouse events (Text Book 3)

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Text Books:

- 1) JAVA one step ahead, Anitha Seth, B.L.Juneja, Oxford.
- 2) Joy with JAVA, Fundamentals of Object Oriented Programming, Debasis Samanta, Monalisa Sarma, Cambridge, 2023.
- 3) JAVA 9 for Programmers, Paul Deitel, Harvey Deitel, 4th Edition, Pearson.

References Books:

- 1) The complete Reference Java, 11th edition, Herbert Schildt, TMH
- 2) Introduction to Java programming, 7th Edition, Y Daniel Liang, Pearson

Online Resources:

- 1) <https://nptel.ac.in/courses/106/105/106105191/>
- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012880464547618816347_shared/overview

II Year I Semester

L	T	P	C
0	0	3	1.5

ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS LAB

Course Objectives:

The objectives of the course is to

- Acquire practical skills in constructing and managing Data structures
- Apply the popular algorithm design methods in problem-solving scenarios

Experiments covering the Topics:

- Operations on AVL trees, B-Trees, Heap Trees
- Graph Traversals
- Sorting techniques
- Minimum cost spanning trees
- Shortest path algorithms
- 0/1 Knapsack Problem
- Travelling Salesperson problem
- Optimal Binary Search Trees
- N-Queens Problem
- Job Sequencing

Sample Programs:

1. Construct an AVL tree for a given set of elements which are stored in a file. And implement insert and delete operation on the constructed tree. Write contents of tree into a new file using in-order.
2. Construct B-Tree an order of 5 with a set of 100 random elements stored in array. Implement searching, insertion and deletion operations.
3. Construct Min and Max Heap using arrays, delete any element and display the content of the Heap.
4. Implement BFT and DFT for given graph, when graph is represented by
 - a) Adjacency Matrix
 - b) Adjacency Lists
5. Write a program for finding the biconnected components in a given graph.
6. Implement Quick sort and Merge sort and observe the execution time for various input sizes (Average, Worst and Best cases).
7. Compare the performance of Single Source Shortest Paths using Greedy method when the graph is represented by adjacency matrix and adjacency lists.
8. Implement Job Sequencing with deadlines using Greedy strategy.
9. Write a program to solve 0/1 Knapsack problem Using Dynamic Programming.
10. Implement N-Queens Problem Using Backtracking.
11. Use Backtracking strategy to solve 0/1 Knapsack problem.
12. Implement Travelling Sales Person problem using Branch and Bound approach.

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Reference Books:

1. Fundamentals of Data Structures in C++, Horowitz Ellis, Sahni Sartaj, Mehta, Dinesh, 2nd Edition, Universities Press
2. Computer Algorithms/C++ Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, 2nd Edition, University Press
3. Data Structures and program design in C, Robert Kruse, Pearson Education Asia
4. An introduction to Data Structures with applications, Trembley & Sorenson, McGraw Hill

Online Learning Resources:

1. <http://cse01-iiith.vlabs.ac.in/>
2. <http://peterindia.net/Algorithms.html>

II Year I Semester

L	T	P	C
0	0	3	1.5

OBJECT ORIENTED PROGRAMMING THROUGH JAVA LAB

Course Objectives:

The aim of this course is to

- Practice object oriented programming in the Java programming language
- implement Classes, Objects, Methods, Inheritance, Exception, Runtime Polymorphism, User defined Exception handling mechanism
- Illustrate inheritance, Exception handling mechanism, JDBC connectivity
- Construct Threads, Event Handling, implement packages, Java FX GUI

Experiments covering the Topics:

- Object Oriented Programming fundamentals- data types, control structures
- Classes, methods, objects, Inheritance, polymorphism,
- Exception handling, Threads, Packages, Interfaces
- Files, I/O streams, JavaFX GUI

Sample Experiments:

Exercise – 1:

- a) Write a JAVA program to display default value of all primitive data type of JAVA
- b) Write a java program that display the roots of a quadratic equation $ax^2+bx=0$. Calculate the discriminant D and basing on value of D, describe the nature of root.

Exercise - 2

- a) Write a JAVA program to search for an element in a given list of elements using binary search mechanism.
- b) Write a JAVA program to sort for an element in a given list of elements using bubble sort
- c) Write a JAVA program using StringBuffer to delete, remove character.

Exercise - 3

- a) Write a JAVA program to implement class mechanism. Create a class, methods and invoke them inside main method.
- b) Write a JAVA program implements method overloading.
- c) Write a JAVA program to implement constructor.
- d) Write a JAVA program to implement constructor overloading

Exercise - 4

- a) Write a JAVA program to implement Single Inheritance
- b) Write a JAVA program to implement multi level Inheritance
- c) Write a JAVA program for abstract class to find areas of different shapes

Exercise - 5

- a) Write a JAVA program give example for “super” keyword.
- b) Write a JAVA program to implement Interface. What kind of Inheritance can be achieved?

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

c) Write a JAVA program that implements Runtime polymorphism

Exercise - 6

- a) Write a JAVA program that describes exception handling mechanism
- b) Write a JAVA program Illustrating Multiple catch clauses
- c) Write a JAVA program for creation of Java Built-in Exceptions
- d) Write a JAVA program for creation of User Defined Exception

Exercise - 7

- a) Write a JAVA program that creates threads by extending Thread class. First thread display “Good Morning “every 1 sec, the second thread displays “Hello “every 2 seconds and the third display “Welcome” every 3 seconds, (Repeat the same by implementing Runnable)
- b) Write a program illustrating **is Alive** and **join ()**
- c) Write a Program illustrating Daemon Threads.
- d) Write a JAVA program Producer Consumer Problem

Exercise – 8

- a) Write a JAVA program that import and use the user defined packages
- b) Without writing any code, build a GUI that display text in label and image in an ImageView (use JavaFX)
- c) Build a Tip Calculator app using several JavaFX components and learn how to respond to user interactions with the GUI

II Year I Semester

**PYTHON PROGRAMMING
(Skill Enhancement Course)**

L	T	P	C
0	1	2	2

Course Objectives:

The main objectives of the course are to

- Introduce core programming concepts of Python programming language.
- Demonstrate about Python data structures like Lists, Tuples, Sets and dictionaries
- Implement Functions, Modules and Regular Expressions in Python Programming and to create practical and contemporary applications using these

UNIT-I:

History of Python Programming Language, Thrust Areas of Python, Installing Anaconda Python Distribution, Installing and Using Jupyter Notebook.

Parts of Python Programming Language: Identifiers, Keywords, Statements and Expressions, Variables, Operators, Precedence and Associativity, Data Types, Indentation, Comments, Reading Input, Print Output, Type Conversions, the type () Function and Is Operator, Dynamic and Strongly Typed Language.

Control Flow Statements: if statement, if-else statement, if...elif...else, Nested if statement, while Loop, for Loop, continue and break Statements, Catching Exceptions Using try and except Statement.

Sample Experiments:

1. Write a program to find the largest element among three Numbers.
2. Write a Program to display all prime numbers within an interval
3. Write a program to swap two numbers without using a temporary variable.
4. Demonstrate the following Operators in Python with suitable examples.
 - i) Arithmetic Operators ii) Relational Operators iii) Assignment Operators iv) Logical Operators v) Bit wise Operators vi) Ternary Operator vii) Membership Operators viii) Identity Operators
5. Write a program to add and multiply complex numbers
6. Write a program to print multiplication table of a given number.

UNIT-II:

Functions: Built-In Functions, Commonly Used Modules, Function Definition and Calling the function, return Statement and void Function, Scope and Lifetime of Variables, Default Parameters, Keyword Arguments, *args and **kwargs, Command Line Arguments.

Strings: Creating and Storing Strings, Basic String Operations, Accessing Characters in String by Index Number, String Slicing and Joining, String Methods, Formatting Strings.

Lists: Creating Lists, Basic List Operations, Indexing and Slicing in Lists, Built-In Functions Used on Lists, List Methods, del Statement.

PRAKASAM ENGINEERING COLLEGE:: KANDUKUR (AUTONOMOUS)

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Sample Experiments:

1. Write a program to define a function with multiple return values.
2. Write a program to define a function using default arguments.
3. Write a program to find the length of the string without using any library functions.
4. Write a program to check if the substring is present in a given string or not.
5. Write a program to perform the given operations on a list:
 - i. addition
 - ii. insertion
 - iii. slicing
6. Write a program to perform any 5 built-in functions by taking any list.

UNIT-III:

Dictionaries: Creating Dictionary, Accessing and Modifying key:value Pairs in Dictionaries, Built-In Functions Used on Dictionaries, Dictionary Methods, del Statement.

Tuples and Sets: Creating Tuples, Basic Tuple Operations, tuple() Function, Indexing and Slicing in Tuples, Built-In Functions Used on Tuples, Relation between Tuples and Lists, Relation between Tuples and Dictionaries, Using zip() Function, Sets, Set Methods, Frozenset.

Sample Experiments:

1. Write a program to create tuples (name, age, address, college) for at least two members and concatenate the tuples and print the concatenated tuples.
2. Write a program to count the number of vowels in a string (No control flow allowed).
3. Write a program to check if a given key exists in a dictionary or not.
4. Write a program to add a new key-value pair to an existing dictionary.
5. Write a program to sum all the items in a given dictionary.

UNIT-IV:

Files: Types of Files, Creating and Reading Text Data, File Methods to Read and Write Data, Reading and Writing Binary Files, Pickle Module, Reading and Writing CSV Files, Python os and os.path Modules.

Object-Oriented Programming: Classes and Objects, Creating Classes in Python, Creating Objects in Python, Constructor Method, Classes with Multiple Objects, Class Attributes Vs Data Attributes, Encapsulation, Inheritance, Polymorphism.

Sample Experiments:

1. Write a program to sort words in a file and put them in another file. The output file should have only lower-case words, so any upper-case words from source must be lowered.
2. Python program to print each line of a file in reverse order.
3. Python program to compute the number of characters, words and lines in a file.
4. Write a program to create, display, append, insert and reverse the order of the items in the array.

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

5. Write a program to add, transpose and multiply two matrices.
6. Write a Python program to create a class that represents a shape. Include methods to calculate its area and perimeter. Implement subclasses for different shapes like circle, triangle, and square.

UNIT-V:

Introduction to Data Science: Functional Programming, JSON and XML in Python, NumPy with Python, Pandas.

Sample Experiments:

1. Python program to check whether a JSON string contains complex object or not.
2. Python Program to demonstrate NumPy arrays creation using array () function.
3. Python program to demonstrate use of ndim, shape, size, dtype.
4. Python program to demonstrate basic slicing, integer and Boolean indexing.
5. Python program to find min, max, sum, cumulative sum of array
6. Create a dictionary with at least five keys and each key represent value as a list where this list contains at least ten values and convert this dictionary as a pandas data frame and explore the data through the data frame as follows:
 - a) Apply head () function to the pandas data frame
 - b) Perform various data selection operations on Data Frame
7. Select any two columns from the above data frame, and observe the change in one attribute with respect to other attribute with scatter and plot operations in matplotlib

Reference Books:

1. Gowri shankar S, Veena A., Introduction to Python Programming, CRC Press.
2. Python Programming, S Sridhar, J Indumathi, V M Hariharan, 2nd Edition, Pearson, 2024
3. Introduction to Programming Using Python, Y. Daniel Liang, Pearson.

Online Learning Resources/Virtual Labs:

1. <https://www.coursera.org/learn/python-for-applied-data-science-ai>
2. <https://www.coursera.org/learn/python?specialization=python#syllabus>

II Year I Semester

ENVIRONMENTAL SCIENCE

L	T	P	C
2	0	0	0

Course Objectives:

- To make the students to get awareness on environment
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day to day activities of human life
- To save earth from the inventions by the engineers.

Course Outcomes:

- Grasp multidisciplinary nature of environmental studies and various renewable and non-renewable resources.
- Understand flow and bio-geo-chemical cycles and ecological pyramids.
- Understand various causes of pollution and solid waste management and related preventive measures.
- About the rainwater harvesting, watershed management, ozone layer depletion and waste landreclamation.
- Casus of population explosion, value education and welfare programmes.

UNIT-I

Multidisciplinary Nature Of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources: Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timberextraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems–Mineral resources:Use and exploitation, environmental effects of extracting and using mineral resources, case studies–Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, casestudies.– Energy resources:

UNIT-II

Ecosystems: Concept to an ecosystem.–Structure and function of an ecosystem–Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids–Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

PRAKASAM ENGINEERING COLLEGE:: KANDUKUR (AUTONOMOUS)

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Biodiversity And Its Conservation: Introduction Definition: genetic, species and ecosystem diversity–Bio-geographical classification of India–Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-spots of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts– Endangered and endemic species of India –Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT-III

Environmental Pollution: Definition, Cause, effects and control measures of:

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT-IV

Social Issues and the Environment: From Unsustainable to Sustainable development– Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions–Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wastel and reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act–Wild life Protection Act–Forest Conservation Act–Issues involved in enforcement of environment legislation–Public awareness.

UNIT-V

Human Population And The Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education–HIV/AIDS–Women and Child Welfare–Role of information Technology in Environment and human health–Case studies. Field Work: Visit to a local area to document environmental assets River/ forest/ grassland/ hill/ mountain – Visit to a local polluted site–Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds–river, hills, slopes, etc..

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Text books:

1. Text book of Environmental Studies for Undergraduate Courses ErachBharucha for University Grants Commission,Universities Press.
2. Palaniswamy,“Environmental Studies”,Pearson education
3. S.AzeemUnnisa,“Environmental Studies”Academic Publishing Company
4. K.RaghavanNambiar,“Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus”, Scitech Publications (India), Pvt.Ltd.

Reference Books:

1. DeekshaDaveandE.SaiBabaReddy, “Text book of Environmental Science”,Cengage Publications.
2. M.AnjiReddy,“Text book of Environmental Sciences and Technology”,BSPublication.
3. J.P.Sharma,Comprehensive Environmental studies,Laxmi publications.
4. J.GlynnHenryandGaryW.Heinke,“Environmental Sciences and Engineering”,Prentice Hall of India Private limited
5. G.R.Chatwal,“A Text Book of Environmental Studies”Himalaya Publishing House
6. Gilbert M.Masters and WendellP.Ela,“Introduction to Environmental Engineering and Science,Prentice Hall of India Private limited.

II Year II Semester

L	T	P	C
2	0	0	2

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Course Objectives:

- To inculcate the basic knowledge of micro economics and financial accounting
- To make the students learn how demand is estimated for different products, input-output relationship for optimizing production and cost
- To Know the Various types of market structure and pricing methods and strategy
- To give an overview on investment appraisal methods to promote the students to learn how to plan long-term investment decisions.
- To provide fundamental skills on accounting and to explain the process of preparing financial statements.

Course Outcomes:

- Define the concepts related to Managerial Economics, financial accounting and management.
- Understand the fundamental concepts of Economics viz., Demand, Production, cost, revenue and markets
- Apply the Concept of Production cost and revenues for effective Business decision
- Analyze how to invest their capital and maximize returns
- Evaluate the capital budgeting techniques
- Develop the accounting statements and evaluate the financial performance of business entity.

UNIT-I

Managerial Economics: Introduction – Nature, meaning, significance, functions, and advantages. Demand-Concept, Function, Law of Demand - Demand Elasticity- Types – Measurement. Demand Forecasting- Factors governing Forecasting, Methods. Managerial Economics and Financial Accounting and Management.

UNIT-II

Production and Cost Analysis: Introduction – Nature, meaning, significance, functions and advantages. Production Function- Least-cost combination- Short run and long run Production Function- Isoquants and Isocosts, MRTS -Cobb-Douglas Production Function - Laws of Returns - Internal and External Economies of scale. Cost & Break-Even Analysis - Cost concepts and Cost behaviour- Break-Even Analysis (BEA) -Determination of Break-Even Point (Simple Problems)-Managerial significance and limitations of Break-Even Analysis.

PRAKASAM ENGINEERING COLLEGE:: KANDUKUR (AUTONOMOUS)

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

UNIT-III

Business Organizations and Markets: Introduction–Nature, meaning, significance, functions and advantages.Forms of Business Organizations- Sole Proprietary - Partnership - Joint Stock Companies - Public Sector Enterprises.Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition Monopoly-Monopolistic Competition–Oligopoly-Price-Output Determination-Pricing Methods and Strategies

UNIT-IV

Capital Budgeting: Introduction – Nature, meaning, significance, functions and advantages. Types of Working Capital, Components, Sources of Short-term and Long-term Capital, Estimating Working capital requirements. Capital Budgeting–Features, Proposals, Methods and Evaluation. Projects– Pay Back Method ,Accounting Rate of Return(ARR) Net Present Value(NPV)Internal Rate Return(IRR) Method (sample problems)

UNIT-V

Financial Accounting and Analysis: Introduction – Nature, meaning, significance, functions and advantages. Concepts and Conventions-Double-Entry Book Keeping, Journal, Ledger, Trial Balance-Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments).Financial Analysis-Analysis and Interpretation of Liquidity Ratios,Activity Ratios, and Capital structure Ratios and Profitability.

Textbooks:

1. Varshney & Maheswari: Managerial Economics, Sultan Chand, 2013.

Reference Books:

1. Managerial Economics: Principles And Worldwide Applications, 9E (Adaptation) by Dominick Salvatore and Siddhartha Rastogi
2. Managerial Economics: Principles and Worldwide Applications by Dominick Salvatore

II Year II Semester

L	T	P	C
3	0	0	3

NUMBER THEORY AND ITS APPLICATIONS

Course Objectives:

This course enables the students to learn the concepts of number theory and its applications to information security.

Course Outcomes:

1. Apply the knowledge of GCD and Prime Factorization.
2. Understand principles on congruence
3. Develop the knowledge of congruence applications
4. Understand the finite fields and primality
5. Develop various encryption methods and its applications.

UNIT – I: Integers, Greatest common divisors and prime Factorization

The well-ordering property-Divisibility-Representation of integers-Computer operations with integers-Prime numbers-Greatest common divisors-The Euclidean algorithm -The fundamental theorem of arithmetic-Factorization of integers and the Fermat numbers-Linear Diophantine equations

UNIT – II: Congruence:

Introduction to congruence -Linear congruence-The Chinese remainder theorem-Systems of linear congruence

UNIT – III: Applications of Congruence:

Divisibility tests-The perpetual calendar-Round-robin tournaments-Computer file storage and hashing functions. Wilson's theorem and Fermat's little theorem- Pseudo primes- Euler's theorem- Euler's phi-function- The sum and number of divisors- Perfect numbers and Mersenne primes.

UNIT – IV: Finite fields & Primality, factoring

Finite fields- quadratic residues and reciprocity-Pseudo primes-rho method-Fermat factorization and factor bases.

UNIT – V: Cryptology

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Basic terminology-complexity theorem-Character ciphers-Block ciphers-Exponentiation ciphers- Public-key cryptography-Discrete logarithm-Knapsack ciphers- RSA algorithm.

Text Books:

1. Elementary number theory and its applications, Kenneth H Rosen, AT & T Information systems & Bell laboratories.
2. A course in Number theory & Cryptography, Neal Koblitz, Springer.

Reference Books:

1. An Introduction To The Theory Of Numbers, [Herbert S. Zuckerman, Hugh L. Montgomery, Ivan Niven](#), wiley publishers
2. Introduction to Analytic number theory-Tom M Apostol, springer
3. Elementary number theory, VK Krishnan, Universities press

II Year II Semester

OPERATING SYSTEMS

L	T	P	C
3	0	0	3

Course Objectives:

The main objectives of the course is to make student

- Understand the basic concepts and principles of operating systems, including process management, memory management, file systems, and Protection
- Make use of process scheduling algorithms and synchronization techniques to achieve better performance of a computer system.
- Illustrate different conditions for deadlock and their possible solutions.

UNIT - I

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Free and Open-Source Operating Systems

System Structures: Operating System Services, User and Operating-System Interface, system calls, Types of System Calls, system programs, Operating system Design and Implementation, Operating system structure, Building and Booting an Operating System, Operating system debugging

UNIT - II

Processes: Process Concept, Process scheduling, Operations on processes, Inter-process communication. **Threads and Concurrency:** Multithreading models, Thread libraries, Threading issues. **CPU Scheduling:** Basic concepts, Scheduling criteria, Scheduling

algorithms, Multiple processor scheduling.

UNIT - III

Synchronization Tools: The Critical Section Problem, Peterson's Solution, Mutex Locks, Semaphores, Monitors, Classic problems of Synchronization. **Deadlocks:** system Model, Deadlock characterization, Methods for handling Deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from Deadlock.

UNIT - IV

Memory-Management Strategies: Introduction, Contiguous memory allocation, Paging, Structure of the Page Table, Swapping. **Virtual Memory Management:** Introduction,

Demand paging, Copy-on-write, Page replacement, Allocation of frames, Thrashing. **Storage Management:** Overview of Mass Storage Structure, HDD Scheduling.

UNIT - V

File System: File System Interface: File concept, Access methods, Directory Structure; File system Implementation: File-system structure, File-system Operations, Directory implementation, Allocation method, Free space management; File-System Internals: File-System Mounting, Partitions and Mounting, File Sharing. **Protection:** Goals of protection, Principles of protection, Protection Rings, Domain of protection, Access matrix.

Text Books:

1. Operating System Concepts, Silberschatz A, Galvin P B, Gagne G, 10th Edition, Wiley, 2018.

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

2. Modern Operating Systems, Tanenbaum A S, 4th Edition, Pearson , 2016

Reference Books:

1. Operating Systems -Internals and Design Principles, Stallings W, 9th edition, Pearson, 2018
2. Operating Systems: A Concept Based Approach, D.M Dhamdhere, 3rd Edition, McGraw- Hill, 2013

Online Learning Resources:

1. <https://nptel.ac.in/courses/106/106/106106144/>
2. <http://peterindia.net/OperatingSystems.html>

II Year II Semester

L	T	P	C
3	0	0	3

DATABASE MANAGEMENT SYSTEMS

Course Objectives:

The main objectives of the course is to

- Introduce database management systems and to give a good formal foundation on the relational model of data and usage of Relational Algebra
- Introduce the concepts of basic SQL as a universal Database language
- Demonstrate the principles behind systematic database design approaches by covering conceptual design, logical design through normalization
- Provide an overview of physical design of a database system, by discussing Database indexing techniques and storage techniques

UNIT I:

Introduction: Database system, Characteristics (Database Vs File System), Database Users, Advantages of Database systems, Database applications. Brief introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier schema architecture for data independence; Database system structure, environment, Centralized and Client Server architecture for the database. Entity Relationship Model: Introduction, Representation of entities, attributes, entity set, relationship, relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER Diagrams.

UNIT II:

Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, relation, importance of null values, constraints (Domain, Key constraints, integrity constraints) and their importance, Relational Algebra, Relational Calculus. BASIC SQL: Simple Database schema, data types, table definitions (create, alter), different DML operations (insert, delete, update).

UNIT III:

SQL: Basic SQL querying (select and project) using where clause, arithmetic & logical operations, SQL functions (Date and Time, Numeric, String conversion).Creating tables with relationship, implementation of key and integrity constraints, nested queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins, view(updatable and non-updatable), relational set operations.

UNIT IV:

Schema Refinement (Normalization):Purpose of Normalization or schema refinement, concept of functional dependency, normal forms based on functional dependency Lossless join and dependency preserving decomposition, (1NF, 2NF and 3 NF), concept of surrogate

PRAKASAM ENGINEERING COLLEGE:: KANDUKUR (AUTONOMOUS)

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

key, Boyce-Codd normal form(BCNF), MVD, Fourth normal form(4NF), Fifth Normal Form (5NF).

UNIT V:

Transaction Concept: Transaction State, ACID properties, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability, lock based, time stamp based, optimistic, concurrency protocols, Deadlocks, Failure Classification, Storage, Recovery and Atomicity, Recovery algorithm. Introduction to Indexing Techniques: B+ Trees, operations on B+Trees, Hash Based Indexing:

Text Books:

- 1) Database Management Systems, 3rd edition, Raghurama Krishnan, Johannes Gehrke, TMH (For Chapters 2, 3, 4)
- 2) Database System Conc pts, 5th edition, Silberschatz, Korth, Sudarsan, TMH (For Chapter 1 and Chapter 5)

Reference Books:

- 1) Introduction to Database Systems, 8th edition, C J Date, Pearson.
- 2) Database Management System, 6th edition, Ramez Elmasri, Shamkant B. Navathe, Pearson
- 3) Database Principles Fundamentals of Design Implementation and Management, Corlos Coronel, Steven Morris, Peter Robb, Cengage Learning.

Web-Resources:

- 1) <https://nptel.ac.in/courses/106/105/106105175/>
- 2) https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01275806667282022456_shared/overview

II Year II Semester

COMPUTER NETWORKS

L	T	P	C
3	0	0	3

Course Objectives:

The main objectives of the course is to

- To understand the different types of networks
- To discuss the software and hardware components of a network
- To develop an understanding the principles of computer networks.
- To familiarize with OSI model and the functions of layered structure.
- To explain networking protocols, algorithms and design perspectives

UNIT I:

Introduction: Types of Computer Networks, Broadband Access Networks, Mobile and Wireless Access Networks, Content Provider Networks, Transit networks, Enterprise Networks, Network technology from local to global, Personal Area Networks, Local Area Networks, Home Networks, Metropolitan Area Networks, Wide Area Networks, Internetworks, Network Protocols, Design Goals, Protocol Layering, Connections and Reliability, Service Primitives, The Relationship of Services to Protocols ,Reference Models, The OSI Reference Model, The TCP/IP Reference Model, A Critique of the OSI Model and Protocols, A Critique of the TCP/IP Reference Model and Protocols.

UNIT II:

The Data Link Layer: Guided Transmission Media, Persistent Storage, Twisted Pairs, Coaxial Cable, Power Lines, Fiber Optics, Data Link Layer Design Issues, Services Provided To The Network Layer, Framing Error Control, Flow Control, Error Detection And Correction, Error-Correcting Codes, Error-Detecting Codes, Elementary Data Link Protocols, Initial Simplifying Assumptions Basic Transmission And Receipt, Simplex Link-Layer Protocols, Improving Efficiency, Bidirectional Transmission, Multiple Frames In Flight, Examples Of Full-Duplex, Sliding Window Protocols, The Channel Allocation Problem, Static Channel Allocation, Assumptions For Dynamic Channel Allocation, Multiple Access Protocols, Aloha, Carrier Sense Multiple Access Protocols, Collision-Free Protocols, Limited-Contention Protocols, Wireless LAN Protocols, Ethernet, Classic Ethernet Physical Layer, Classic Ethernet Mac Sublayer Protocol, Ethernet Performance, Switched Ethernet, Fast Ethernet, Gigabit Ethernet, 10-Gigabit Ethernet, 40- And 100-Gigabit Ethernet, Retrospective On Ethernet.

UNIT III:

The Network Layer: Network Layer Design Issues, Store-And-Forward Packet Switching, Services Provided To The Transport Layer, Implementation Of Connectionless Service, Implementation Of Connection-Oriented Service, Comparison Of Virtual-Circuit And Datagram Networks, Routing Algorithms In A Single Network, The Optimality Principle, Shortest Path Algorithm, Flooding, Distance Vector Routing, Link State Routing,

Hierarchical Routing Within a Network, Broadcast Routing, Multicast Routing, Anycast Routing, Traffic Management at The Network Layer, The Need for Traffic Management: Congestion, Approaches To Traffic Management, Internetworking, Internetworks: An Overview, How Networks differ, Connecting Heterogeneous Networks, Connecting Endpoints Across Heterogeneous Networks, Internetwork Routing: Routing Across Multiple Networks Supporting Different Packet Sizes: Packet Fragmentation, The Network Layer In The Internet, The IP Version 4 Protocol, IP Addresses, IP Version 6, Internet Control Protocols, Label Switching and MPLS, OSPF—An Interior Gateway Routing Protocol, BGP—The Exterior Gateway Routing Protocol, Internet Multicasting.

UNIT IV:

The Transport Layer: The Transport Service, Services Provided To The Upper Layers, Transport Service Primitives, Berkeley Sockets, An Example Of Socket Programming: An Internet File Server, Elements Of Transport Protocols, Addressing, Connection Establishment, Connection Release, Error Control And Flow Control, Multiplexing, Crash Recovery, Congestion Control, Desirable Bandwidth Allocation, Regulating The Sending Rate, Wireless Issues, The Internet Transport Protocols: UDP, Introduction To UDP, Remote Procedure Call, Real-Time Transport Protocols, The Internet Transport Protocols: TCP, Introduction To TCP, The TCP Service Model, The TCP Protocol, The TCP Segment Header, TCP Connection Establishment, TCP Connection Release.

UNIT V:

The Application Layer: Electronic Mail, Architecture and Services, The User Agent, Message Formats, Message Transfer, Final Delivery, The World Wide Web, Architectural Overview, Static Web Objects, Dynamic Web Pages and Web Applications, HTTP and HTTPS, Web Privacy, Content Delivery, Content and Internet Traffic, Server Farms and Web Proxies, Content Delivery Networks, Peer-To-Peer Networks, Evolution of The Internet.

Text Books:

Andrew Tanenbaum, Feamster Wetherall, Computer Networks, 6th Edition, Global Edition.

Reference Books:

1. Behrouz A. Forouzan, Data Communications and Networking, 5th Edition, McGraw Hill Publication, 2017.
2. James F. Kurose, Keith W. Ross, “Computer Networking: A Top-Down Approach”, 6th edition, Pearson, 2019.
3. Youlu Zheng, Shakil Akthar, “Networks for Computer Scientists and Engineers”, Oxford Publishers, 2016.

Web-Resources:

- <https://nptel.ac.in/courses/106105183/25>
- <http://www.nptelvideos.in/2012/11/computer-networks.html>
- <https://nptel.ac.in/courses/106105183/3>

II Year II Semester

L	T	P	C
0	0	3	1.5

COMPUTER NETWORKS LAB

Course Objectives:

- To understand the different types of networks
- To discuss the software and hardware components of a network
- To enlighten the working of networking commands supported by operating system
- To impart knowledge of Network simulator2/3
- To familiarize the use of networking functionality supported by JAVA
- To familiarize with computer networking tools.

List of Activities/Experiments:

1. Study different types of Network cables (Copper and Fiber) and prepare cables (Straight and Cross) to connect Two or more systems. Use crimping tool to connect jacks. Use LAN tester to connect the cables.
 - Install and configure Network Devices: HUB, Switch and Routers. Consider both manageable and non-manageable switches. Do the logical configuration of the system. Set the bandwidth of different ports.
 - Install and Configure Wired and Wireless NIC and transfer files between systems in Wired LAN and Wireless LAN. Consider both adhoc and infrastructure mode of operation.
2. Work with the commands Ping, Tracert, Ipconfig, pathping, telnet, ftp, getmac, ARP, Hostname, Nbtstat, netdiag, and Nslookup
3. Find all the IP addresses on your network. Unicast, Multicast, and Broadcast on your network.
4. Use Packet tracer software to build network topology and configure using Distance vector routing protocol.
5. Use Packet tracer software to build network topology and configure using Link State routing protocol.
6. Using JAVA RMI Write a program to implement Basic Calculator.
7. Implement a Chatting application using JAVA TCP and UDP sockets.
8. Hello command is used to know whether the machine at the other end is working or not. Echo command is used to measure the round-trip time to the neighbor. Implement Hello and Echo commands using JAVA.
9. Using Wireshark perform the following operations:
 - Inspect HTTP Traffic
 - Inspect HTTP Traffic from a Given IP Address,
 - Inspect HTTP Traffic to a Given IP Address,
 - Reject Packets to Given IP Address,
 - Monitor Apache and MySQL Network Traffic.
10. Install Network Simulator 2/3. Create a wired network using dumbbell topology. Attach agents, generate both FTP and CBR traffic, and transmit the traffic. Vary the data rates and evaluate the performance using metrics throughput, delay, jitter and packet loss.
11. Create a static wireless network. Attach agents, generate both FTP and CBR traffic, and transmit the traffic. Vary the data rates and evaluate the performance using metric throughput, delay, jitter and packet loss.
12. Create a mobile wireless network. Attach agents, generate both FTP and CBR traffic, and transmit the traffic. Vary the data rates and evaluate the performance using metric throughput, delay, jitter and packet loss.

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Text Books:

1. ShivendraS.Panwar, Shiwen Mao, Jeong-dong Ryoo, and Yihan Li, “TCP/IP Essentials:A Lab-Based Approach”, Cambridge University Press, 2004.
2. Cisco Networking Academy, “CCNA1 and CCNA2 Companion Guide”, Cisco Networking Academy Program, 3rd edition, 2003.
3. Elloitte Rusty Harold, “Java Network Programming”, 3rd edition, O’R ILLY, 2011.

Online Learning Resources:

<https://www.netacad.com/courses/packet-tracer> - Cisco Packet Tracer.

Ns Manual, Available at: <https://www.isi.edu/nsnam/ns/ns-documentation.html>, 2011.

https://www.wireshark.org/docs/wsug_html_chunked/ -Wireshark.

<https://nptel.ac.in/courses/106105183/25> <http://www.nptelvideos.in/2012/11/computer-networks.html> <https://nptel.ac.in/courses/106105183/3>

http://vlabs.iitb.ac.in/vlabs-dev/labs_local/computer-networks/labs/explist.php

II Year II Semester

L	T	P	C
0	0	3	1.5

DATABASE MANAGEMENT SYSTEMS LAB

Course Objectives:

This Course will enable students to

- Populate and query a database using SQL DDL/DML Commands
- Declare and enforce integrity constraints on a database
- Writing Queries using advanced concepts of SQL
- Programming PL/SQL including procedures, functions, cursors and triggers,

Experiments covering the topics:

- DDL, DML, DCL commands
- Queries, nested queries, built-in functions,
- PL/SQL programming- control structures
- Procedures, Functions, Cursors, Triggers,
- Database connectivity- ODBC/JDBC

Sample Experiments:

1. Creation, altering and dropping of tables and inserting rows into a table (use constraints while creating tables) examples using SELECT command.
2. Queries (along with sub Queries) using ANY, ALL, IN, EXISTS, NOTEXISTS, UNION, INTERSET, Constraints. Example:- Select the roll number and name of the student who secured fourth rank in the class.
3. Queries using Aggregate functions (COUNT, SUM, AVG, MAX and MIN), GROUP BY, HAVING and Creation and dropping of Views.
4. Queries using Conversion functions (to_char, to_number and to_date), string functions (Concatenation, lpad, rpad, ltrim, rtrim, lower, upper, initcap, length, substr and instr), date functions (Sysdate, next_day, add_months, last_day, months_between, least, greatest, trunc, round, to_char, to_date)
5.
 - i. Create a simple PL/SQL program which includes declaration section, executable section and exception -Handling section (Ex. Student marks can be selected from the table and printed for those who secured first class and an exception can be raised if no records were found)
 - ii. Insert data into student table and use COMMIT, ROLLBACK and SAVEPOINT in PL/SQL block.
6. Develop a program that includes the features NESTED IF, CASE and CASE expression. The program can be extended using the NULLIF and COALESCE functions.
7. Program development using WHILE LOOPS, numeric FOR LOOPS, nested loops using ERROR Handling, BUILT -IN Exceptions, USE defined Exceptions, RAISE-APPLICATION ERROR.

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

8. Programs development using creation of procedures, passing parameters IN and OUT of PROCEDURES.
9. Program development using creation of stored functions, invoke functions in SQL Statements and write complex functions.
10. Develop programs using features parameters in a CURSOR, FOR UPDATE CURSOR, WHERE CURRENT of clause and CURSOR variables.
11. Develop Programs using BEFORE and AFTER Triggers, Row and Statement Triggers and INSTEAD OF Triggers
12. Create a table and perform the search operation on table using indexing and non-indexing techniques.
13. Write a Java program that connects to a database using JDBC
14. Write a Java program to connect to a database using JDBC and insert values into it
15. Write a Java program to connect to a database using JDBC and delete values from it

Text Books/Suggested Reading:

1. Oracle: The Complete Reference by Oracle Press
2. Nilesh Shah, "Database Systems Using Oracle", PHI, 2007
3. Rick F Vander Lans, "Introduction to SQL", Fourth Edition, Pearson Education, 2007

II Year II Semester

**FULL STACK DEVELOPMENT – 1
(Skill Enhancement Course)**

L	T	P	C
0	1	2	2

Course Objectives:

The main objectives of the course are to

- Make use of HTML elements and their attributes for designing static web pages
- Build a web page by applying appropriate CSS styles to HTML elements
- Experiment with JavaScript to develop dynamic web pages and validate forms

Experiments covering the Topics:

- Lists, Links and Images
- HTML Tables, Forms and Frames
- HTML 5 and Cascading Style Sheets, Types of CSS
- Selector forms
- CSS with Color, Background, Font, Text and CSS Box Model
- Applying JavaScript - internal and external, I/O, Type Conversion
- JavaScript Conditional Statements and Loops, Pre-defined and User-defined Objects
- JavaScript Functions and Events
- Node.js

Sample Experiments:

1. Lists, Links and Images

- a. Write a HTML program, to explain the working of lists.
Note: It should have an ordered list, unordered list, nested lists and ordered list in an unordered list and definition lists.
- b. Write a HTML program, to explain the working of hyperlinks using `<a>` tag and `href`, target Attributes.
- c. Create a HTML document that has your image and your friend's image with a specific height and width. Also when clicked on the images it should navigate to their respective profiles.
- d. Write a HTML program, in such a way that, rather than placing large images on a page, the preferred technique is to use thumbnails by setting the height and width parameters to something like to 100*100 pixels. Each thumbnail image is also a link to a full sized version of the image. Create an image gallery using this technique

2. HTML Tables, Forms and Frames

- a. Write a HTML program, to explain the working of tables. (use tags: `<table>`, `<tr>`, `<th>`, `<td>` and attributes: border, rowspan, colspan)
- b. Write a HTML program, to explain the working of tables by preparing a timetable. (Note: Use `<caption>` tag to set the caption to the table & also use cell spacing, cell padding, border, rowspan, colspan etc.).
- c. Write a HTML program, to explain the working of forms by designing Registration form. (Note: Include text field, password field, number field, date of birth field, checkboxes, radio buttons, list boxes using `<select>`&`<option>` tags, `<text area>` and two buttons ie: submit and reset. Use tables to provide a better view).

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

d. Write a HTML program, to explain the working of frames, such that page is to be divided into 3 parts on either direction. (Note: first frame → image, second frame → paragraph, third frame → hyperlink. And also make sure of using “no frame” attribute such that frames to be fixed).

3. HTML 5 and Cascading Style Sheets, Types of CSS

- a. Write a HTML program, that makes use of <article>, <aside>, <figure>, <figcaption>, <footer>, <header>, <main>, <nav>, <section>, <div>, tags.
- b. Write a HTML program, to embed audio and video into HTML web page.
- c. Write a program to apply different types (or levels of styles or style specification formats) - inline, internal, external styles to HTML elements. (identify selector, property and value).

4. Selector forms

- a. Write a program to apply different types of selector forms
 - i. Simple selector (element, id, class, group, universal)
 - ii. Combinator selector (descendant, child, adjacentsibling, general sibling)
 - iii. Pseudo-class selector
 - iv. Pseudo-element selector
 - v. Attribute selector

5. CSS with Color, Background, Font, Text and CSS Box Model

- a. Write a program to demonstrate the various ways you can reference a color in CSS.
- b. Write a CSS rule that places a background image halfway down the page, tilting it horizontally. The image should remain in place when the user scrolls up or down.
- c. Write a program using the following terms related to CSS font and text:
 - i. font-size
 - ii. font-weight
 - iii. font-style
 - iv. text-decoration
 - v. text-transformation
 - vi. text-alignment
- d. Write a program, to explain the importance of CSS Box model using
 - i. Content
 - ii. Border
 - iii. Margin
 - iv. padding

6. Applying JavaScript - internal and external, I/O, Type Conversion

- a. Write a program to embed internal and external JavaScript in a web page.
- b. Write a program to explain the different ways for displaying output.
- c. Write a program to explain the different ways for taking input.
- d. Create a webpage which uses prompt dialogue box to ask a voter for his name and age.
Display the information in table format along with either the voter can vote or not

7. JavaScript Pre-defined and User-defined Objects

- a. Write a program using document object properties and methods.
- b. Write a program using window object properties and methods.
- c. Write a program using array object properties and methods.
- d. Write a program using math object properties and methods.
- e. Write a program using string object properties and methods.
- f. Write a program using regex object properties and methods.
- g. Write a program using date object properties and methods.

PRAKASAM ENGINEERING COLLEGE:: KANDUKUR (AUTONOMOUS)

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

h. Write a program to explain user-defined object by using properties, methods, accessors, constructors and display.

8. JavaScript Conditional Statements and Loops

- a. Write a program which asks the user to enter three integers, obtains the numbers from the user and outputs HTML text that displays the larger number followed by the words “LARGER NUMBER” in an information message dialog. If the numbers are equal, output HTML text as “EQUAL NUMBERS”.
- b. Write a program to display week days using switch case.
- c. Write a program to print 1 to 10 numbers using for, while and do-while loops.
- d. Write a program to print data in object using for-in, for-each and for-of loops
- e. Develop a program to determine whether a given number is an ‘ARMSTRONG NUMBER’ or not. [Eg: 153 is an Armstrong number, since sum of the cube of the digits is equal to the number i.e., $13 + 53 + 33 = 153$]
- f. Write a program to display the denomination of the amount deposited in the bank in terms of 100's, 50's, 20's, 10's, 5's, 2's & 1's. (Eg: If deposited amount is Rs.163, the output should be 1-100's, 1-50's, 1- 10's, 1-2's & 1-1's)

9. Javascript Functions and Events

- a. Design a appropriate function should be called to display
 - i. Factorial of that number
 - ii. Fibonacci series up to that number
 - iii. Prime numbers up to that number
 - iv. Is it palindrome or not
- b. Design a HTML having a text box and four buttons named Factorial, Fibonacci, Prime, and Palindrome. When a button is pressed an appropriate function should be called to display
 - i. Factorial of that number
 - ii. Fibonacci series up to that number
 - iii. Prime numbers up to that number
 - iv. Is it palindrome or not
- c. Write a program to validate the following fields in a registration page
 - i. Name (start with alphabet and followed by alphanumeric and the length should not be less than 6 characters)
 - ii. Mobile (only numbers and length 10 digits)
 - iii. E-mail (should contain format like xxxxxxxx@xxxxxxxx.xxx)

10. Node.js

- a. Write a program to show the workflow of JavaScript code executable by creating web server in Node.js.
- b. Write a program to transfer data over http protocol using http module.
- c. Create a text file src.txt and add the following content to it. (HTML, CSS, Javascript, Typescript, MongoDB, Express.js, React.js, Node.js)
- d. Write a program to parse an URL using URL module.
- e. Write a program to create an user-defined module and show the workflow of Modularization of application using Node.js

**PRAKASAM ENGINEERING COLLEGE:: KANDUKUR
(AUTONOMOUS)**

B.TECH- CSE (CS) (R23- IInd YEAR COURSE STRUCTURE & SYLLABUS)

Text Books:

1. Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson, 2013.
2. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, 2nd edition, APress, O'Reilly.

Web Links:

<https://www.w3schools.com/html>
<https://www.w3schools.com/css>
<https://www.w3schools.com/js/>
<https://www.w3schools.com/nodejs>
<https://www.w3schools.com/typescript>

II Year II Semester

L	T	P	C
1	0	2	2

DESIGN THINKING & INNOVATION

Course Objectives: The objectives of the course are to

- Bring awareness on innovative design and new product development.
- Explain the basics of design thinking.
- Familiarize the role of reverse engineering in product development.
- Train how to identify the needs of society and convert into demand.
- Introduce product planning and product development process.

UNIT – I Introduction to Design Thinking

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

UNIT - II Design Thinking Process

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brainstorming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT - III Innovation

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations. Creativity to Innovation. Teams for innovation, Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

UNIT - IV Product Design

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications. Innovation towards product design Case studies.

Activity: Importance of modeling, how to set specifications, Explaining their own product design.

UNIT – V Design Thinking in Business Processes

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs. Design thinking for Startups. Defining and testing Business Models and Business Cases. Developing & testing prototypes.

Activity: How to market our own product, about maintenance, Reliability and plan for startup.

Textbooks:

1. Tim Brown, Change by design, 1/e, Harper Bollins, 2009.
2. Idris Mootee, Design Thinking for Strategic Innovation, 1/e, Adams Media, 2014.

Reference Books:

1. David Lee, Design Thinking in the Classroom, Ulysses press, 2018.
2. Shrrutin N Shetty, Design the Future, 1/e, Norton Press, 2018.
3. William Lidwell, Kritinaholden, & Jill butter, Universal principles of design, 2/e, Rockport Publishers, 2010.
4. Chesbrough.H, The era of open innovation, 2003.

Online Learning Resources:

- <https://nptel.ac.in/courses/110/106/110106124/>
- <https://nptel.ac.in/courses/109/104/109104109/>
- https://swayam.gov.in/nd1_noc19_mg60/preview
- https://onlinecourses.nptel.ac.in/noc22_de16/preview

Course Outcomes:

COs	Statements	Blooms Level
CO1	Define the concepts related to design thinking.	L1
CO2	Explain the fundamentals of Design Thinking and innovation.	L2
CO3	Apply the design thinking techniques for solving problems in various sectors.	L3
CO4	Analyse to work in a multidisciplinary environment.	L4
CO5	Evaluate the value of creativity.	L5